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1. Loss Functions
In the main paper, we describe the construction of pyra-

midal graphs (G,G′) from the training pair (I, Im) using
the superpixel map S. The GraphFill algorithm takes the
input graph G′ and employs it to estimate the values of un-
known nodes, resulting in the output graph Ĝ. At the i-th
pyramid level, we denote the sub-graphs as Gi, G

′

i, and Ĝi,
representing the ground-truth, masked, and predicted sub-
graphs, respectively. Where sub-graphs Gi and G

′

i are ob-
tained by applying the I2G-layer on the images I and Im
with the corresponding superpixel map Si. To obtain their
coarser representations, we employ the G2I-layer to unmap
the sub-graphs onto image space, resulting in Ci, C ′

i, and
Ĉi. Using the aforementioned notations, we define the fol-
lowing loss functions.

1.1. GraphFill Losses

At each pyramidal level, the GraphFill network is trained
using two loss functions: Mean Squared Error (MSE) loss
and Perceptual Loss. These losses are applied to the coarser
image space representations Ci and Ĉi and are defined in
Equation 1. Here, the total number of pyramid levels is
denoted by p, the MSE loss is represented by LMSE, and
the Perceptual Loss is denoted by LPL. In our experiments,
we set λ1 = 1 and λ2 = 5.

LGF(C, Ĉ) =
p∑

i=1

(
λ1LMSE(Ci, Ĉi) + λ2LPL(Ci, Ĉi)

)
(1)

1.2. Refine Network Losses

The predicted coarser representation after iterative filling
by GraphFill at the p-th layer of the pyramid, which corre-
sponds to the finest layer, is denoted as Ĉp. The Refine
Network takes the input Ir, which is obtained by applying
the Coarse to Masked Union operation on Ĉp as described
in the main paper. It then predicts the final inpainting im-
age Î. Refine Network is trained in an adversarial setting
where generator loss is computed as a combination of Mean

squared error loss, Perceptual Loss, and Feature Matching
Loss (denoted as LFM) as described in Equation 2. In our
experiments, we set λ1 = 1, and λ2, λ3 = 5.

LR(I, Î) = λ1LMSE(I, Î)
+ λ2LPL(I, Î) + λ3LFM(I, Î) (2)

The Refine Network, in combination with GraphFill,
is trained using standard Generative Adversarial Network
(GAN) loss functions, as outlined in the [1]. In this setup,
a discriminator is employed to distinguish between the gen-
erated inpainted image Î and real images, facilitating the
training process. In our experiments, we use discriminator
architecture similar to the one described in [3]. Now, we
will proceed to provide a detailed description of each com-
ponent of the loss functions discussed above.
Mean Squared Error (MSE) Loss. MSE Loss provides a
natural interpretation of the average squared difference be-
tween predictions and ground truth values. Moreover, MSE
Loss penalizes larger prediction errors more heavily due to
the squaring operation. In our approach, we opt to project
the graphs Gi and Ĝi to coarser image space representa-
tions Ci and Ĉi, respectively, instead of directly employing
MSE loss on the node values. This projection is advanta-
geous because a node is comprised of collections of pixels
within a superpixel of the map Si. By projecting the graphs,
we ensure that each pixel contributes equally to generating
the loss. We employ pixel-wise MSE Loss at i-th pyramid
level as illustrated in Equation 3.

LMSE(Ci, Ĉi) =
1

N

N∑
i=1

∥Ci − Ĉi∥2 (3)

Perceptual Loss. While Mean Squared Error (MSE)
focuses on pixel-level differences, Perceptual Loss mea-
sures differences between higher-level visual features ex-
tracted from a pre-trained deep neural network for percep-
tually meaningful transformations, capturing aspects such
as structural similarity, texture, or overall visual style. We



Figure 1. The architecture of the shallow baselines, Pix2Pix [4] and FFC-ResNet [3], is depicted. The deep counterparts of these baselines
consist of 9× the respective blocks.

Pyramid
Level Model MSE ×10−2

Model MSE ×10−2

PCI MR PCI MR
1 GraphFill

(Non-Iterative)
Depth: 2

#Pars: 8.5K

1.904 0.772 GraphFill
(Iterative)
Depth: 2

#Pars: 8.5K

1.884 0.725
2 1.488 0.823 1.475 0.779
3 1.449 0.916 1.412 0.854

Mean 1.614 0.837 1.59 0.786
1 GraphFill

(Non-Iterative)
Depth: 4

#Pars: 41.3K

1.844 0.737 GraphFill
(Iterative)
Depth: 4

#Pars: 41.3K

1.723 0.723
2 1.414 0.777 1.289 0.755
3 1.359 0.856 1.244 0.831

Mean 1.539 0.79 1.419 0.77
1 GraphFill

(Non-Iterative)
Depth: 6

#Pars: 172K

1.851 0.733 GraphFill
(Iterative)
Depth: 6

#Pars: 172K

1.703 0.701
2 1.416 0.783 1.271 0.725
3 1.376 0.874 1.205 0.78

Mean 1.548 0.797 1.393 0.736
1 GraphFill

(Non-Iterative)
Depth: 8

#Pars: 696K

1.859 0.749 GraphFill
(Iterative)
Depth: 8

#Pars: 696K

1.892 0.74
2 1.452 0.789 1.452 0.765
3 1.402 0.874 1.376 0.82

Mean 1.571 0.804 1.573 0.775

Table 1. Ablation study on the depth of the GraphFill architecture,
evaluating the mean squared error (MSE) between the predicted
coarser image (PCI) and ground truth, as well as the MSE incurred
only at the masked region (MR).

define loss at i-th level of the pyramid as demonstrated in
equation 4, where ϕ(·) denotes the feature extraction func-
tion of a pre-trained ResNet Model and |·|2 represents the
squared Euclidean distance between the extracted feature
representations. We determine total loss as summation on
N feature layers of ResNet model ϕ(·).

LPL(Ci, Ĉi) =
1

N

N∑
j=1

∥∥∥ϕ(Ci)j − ϕ(Ĉi)j

∥∥∥2 (4)

Feature Matching Loss Along with higher-level features
similarity that is captured by Perceptual loss, at the refiner
stage we also employ feature-matching loss. Feature match-
ing loss aims to minimize the differences between feature
statistics of the generated and target images at intermedi-
ate layers of discriminator network D. Let the final in-
painted image from Refiner Network be represented as Î
and the corresponding ground truth be I, we calculate fea-
ture matching loss as shown in Equation 5. Here, the sum

Figure 2. Graph-Fill Architecture for Image inpainting using Non-
iterative Graph-filling. (Best viewed in Zoom)

is taken over N discriminator layers.

LFM(I, Î) =
1

N

N∑
j=1

∥∥∥D(ϕ(I)j)−D(ϕ(Î)j)
∥∥∥2 (5)

2. Baseline Network
We apply the GraphFill algorithm to two shallow base-

line models: Pix2Pix [4] and FFC-ResNet [3]. The architec-
ture of our shallow baselines, as depicted in Figure 1, con-
sists of three Multi-Dilated ResNet Blocks for the Pix2Pix
variant and FFC-ResNet Blocks for the FFC variant.

3. Non-Iterative GraphFill
In the case of Iterative Graph Filling, a coarser estima-

tion is needed from the subsequent lower pyramid layer to
iteratively refine the output. However, in the Non-iterative
graph-filling approach, all sub-graphs can be processed in a
single step by GraphFill using the adjacency matrix A, as
explained in the main paper. This approach offers faster
image inpainting compared to the Iterative Graph-Filling
approach, although it may result in slightly degraded per-
formance, as demonstrated quantitatively in Table 5 of the
main manuscript. At the final output stage of all pyrami-
dal levels, the outputs are averaged and passed to the Refine



Figure 3. Qualitative comparison of inpainting on CelebAHQ [2]
by our approach and MADF [6].

Figure 4. Qualitative comparison of inpainting on Places365 [5]
by our approach and MADF [6].

Network after the masked update using the Coarse to Union
operation.

4. Qualitative Results
We provide supplementary qualitative results in Figure

5, displaying the inpainted outputs obtained from both the
Iterative and Non-Iterative Graph-Filling approaches. Ad-
ditionally, we showcase the inpainting results achieved us-
ing the proposed Resolution-Robust Pyramidal Graph Fill-
ing approach in Figure 6. The images used for evaluation
have a resolution of 512×512. Figure 7 and Figure 8 show-
case qualitative results of different variants, including shal-
low baselines, visually representing their performance. We
include qualitative results with MADF (85M learnable pa-
rameters) [6] in Figure 3 and Figure 4.

5. Ablation Studies
Table 1 provides a comprehensive analysis of the effec-

tiveness of iterative graph-filling compared to non-iterative
graph-filling, along with the results of the depth ablation
study on GraphFill architecture. We compute the Mean
Squared Error (MSE) across up to three pyramid levels,
comparing the predicted image Î to the ground truth im-
age I at each level. As pyramid levels increase, the Mean
Squared Error between the predicted and ground truth im-
ages (PCI) diminishes, illustrating the efficacy of Graph-
Fill’s coarser-to-finer strategy. Nonetheless, we note a rise
in MSE within the masked region (MR) at higher pyra-
mid levels due to the greater number of superpixels (Graph
nodes). Furthermore, our findings highlight an enhanced
MSE improvement in Iterative Graph Filling compared to
the Non-Iterative approach. Iterative GraphFill yields a
more substantial decrease in PCI and a lesser increase in
MSE within the masked region, in contrast to the Non-
Iterative GraphFill technique.
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Figure 5. Qualitative result with Iterative Graph-Filling at each pyramidal layer (top two rows) and Non-Iterative Graph-Filling (bottom
two rows).

Figure 6. Qualitative result using Resolution Robust Image Inpainting approach with Iterative Graph-Filling at each pyramidal layer (top
two rows) and Non-Iterative Graph-Filling (bottom two rows).
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Figure 7. Qualitative comparison of various variants on Places365 Dataset[5] as proposed in Table 5 of the main paper.



Figure 8. Qualitative comparison of various variants on CelebA-HQ Dataset[2] as proposed in Table 5 of the main paper.


