
Supplementary: Meta-Learned Attribute Self-Interaction Network for Continual
and Generalized Zero-Shot Learning

Vinay Verma2⋆, Nikhil Mehta2⋆, Kevin J Liang3, Aakansha Mishra4, Lawrence Carin5

2Duke University, 3FAIR, Meta, 4IITG, 5KAUST
{1vverma.vinayy,2nikhilmehta.dce}@gmail.com

1. Proofs
Lemma 1 (Polynomial Approximation) Consider a
model with L layers of self-interaction modules with
parameters {Φℓa, Φℓs, Φℓb}Lℓ=1 and identity activation
gℓa(x) = gℓs(x) = gℓb(x) = x. Let input to the model be:
a = [a1, a3, . . . , aD]. Then, the output of the model aL
approximates following class of polynomial functions:{

Pℓ (a) =
∑
β

wβ aβ1
1 aβ2

2 . . . aβD
D

∣∣∣∣∣ 0 ≤ |β| ≤ 2ℓ
}
, (1)

where the sum is across multiple terms (monomials), β =
[β1, . . . , βD] is a vector containing the exponents of each
attribute in a given term having degree |β| =

∑D
i=1 βi, and

wβ is the coefficient of the corresponding term that depends
on the module parameters. Furthermore, the degree of the
polynomial grows exponentially with the model depth.

Proof. For the polynomial approximation, the self-
interaction module is defined as:

aℓ+1 = Φℓ+1
a (aℓ) ∗ Φℓ+1

s (aℓ) + Φℓ+1
b (aℓ) , (2)

where a0 = a = [a1, a3, . . . , aD] and ∗ is the element-wise
multiplication operator. For the analysis, we consider
{Φℓa, Φℓs, Φℓb}Lℓ=1 ∈ RD×D as square matrices for all
ℓ ∈ [1, . . . , L], however, the analysis can be easily extended
to the case when these matrices are rectangular. To show
that the output of the ℓth self-interaction module approxi-
mates the polynomial, we show that each coordinate of aℓ
belongs to the class of polynomials (1). In the following
analysis, we denote the ith vector coordinate as aℓ[i].
Similarly, the jth column vector in the parameter matrix Φℓ

is denoted as Φℓ[:, j]. Then, the proof of the lemma follows
from induction:

Base: Consider the base case for a0 = [a1, a3, . . . , aD].
Clearly, each coordinate a0[i] belongs to the class of
polynomials in (1). In particular, a0[i] = ai ∈ {P0 (a)}.

Induction step: Assume that when ℓ = k, ak[i] ∈ {Pk(a)}
∀i ∈ {1, . . . , D}. Then, for ℓ = k + 1, we have:

ak+1 = Φk+1
a (ak) ∗ Φk+1

s (ak) + Φk+1
b (ak) (3)

=

(∑
m

ak[m] Φk+1
a [:,m]

)
︸ ︷︷ ︸

ra

∗

(∑
n

ak[n] Φ
k+1
s [:, n]

)
︸ ︷︷ ︸

rs

+

(∑
m

ak[m] Φk+1
b [:,m]

)
︸ ︷︷ ︸

rb

(4)

In (4), each coordinate of the vectors {ra, rs, rb} ∈ RD
belongs to the class of polynomials {Pk(a)} since ak[i] ∈
{Pk(a)} ∀i ∈ {1, . . . , D}. Then, the ith coordinate of ak+1

can be simplified as:

ak+1[i] = ra[i] ∗ rs[i] + rb[i], where (5)

ra[i] ∗ rs[i] =
∑
m

∑
n

ak[m]ak[n] Φ
k+1
a [i,m] Φk+1

s [i, n] (6)

and rb[i] =
∑
m

ak[m] Φk+1
b [i,m] (7)

Since (6) is the sum of the product of polynomials, it fol-
lows that the resulting ak+1[i] is a polynomial. Moreover,
the degree of ak+1[i] satisfies the following:

deg(ak+1[i]) ≤ max
m,n

[deg(ak[m]) + deg(ak[n])] (8)

≤ 2k + 2k = 2k+1 (9)

Hence, ak+1[i] ∈ {Pk+1(a)} ∀i ∈ {1, . . . , D}.

Lemma 2 (Maximize Entropy with IR) Let tξ(a|z) =
N (a;Rξ(z), I) be the probabilistic inverse map associated
with the attribute encoder fΦ, where z = fΦ(a) denotes the
attribute embedding. The mutual information between the
attribute a and the attribute embedding z is defined as:

I(a; z) = H (z; Φ) ≥ H (a)+Ea∼p(a) [log tξ(a|fΦ(a))] . (10)

Proof. Consider the attribute a ∈ RD and the embedding
vector z ∈ Rd to be random variables under pΦ(a, z) =

1

p(a) pΦ(z|a) as the joint distribution. The mutual informa-
tion between attribute and I(a; z) = H(z; Φ) −H(z|a) =
H(a) − H(a|z; Φ). As fΦ : RD → Rd is a determinis-
tic mapping, pΦ(z|a) is a deterministic function of a, i.e.
pΦ(z|a) = δ(z − fΦ(a)). Hence, the conditional entropy
H(z|a) = 0, and H(z; Φ) = H(a)−H(a|z; Φ).

H(a|z; Φ) =− EpΦ(a,z) log pΦ(a|z)

=− EpΦ(a,z) log tξ(a|z)− EpΦ(a,c) log
pΦ(a|z)
tξ(a|z)

=− EpΦ(a,z) log tψ(a|z)
− Ep(z) [KL [pΦ(a|z), tξ(a|z)]]

≤− EpΦ(a,z) log tξ(a|z) (11)

This inequality can be used to bound the entropy:

H(z; Φ) =H(a)−H(a|z; Φ) (12)
≥H(a) + EpΦ(a,z) log tξ(a|z) (13)

2. Datasets
We conduct experiments on five widely used datasets

for zero-shot learning. CUB-200 [12] is a fine-grain
dataset containing 200 classes of birds, and AWA1 [7] and
AWA2 [13] are datasets containing 50 classes of animals,
each represented by an 85-dimensional attribute. aPY [1]
is a diverse dataset containing 32 classes, each associated
with a 64-dimensional attribute. SUN [9] includes 717
classes, each with only 20 samples; fewer samples and a
high number of classes make SUN especially challenging.
In the SUN dataset, each class is represented by a 102-
dimensional attribute vector. The train/test split details are
given in Table 1 and the same split is used for the general-
ized zero-shot Learning (GZSL) setting.

The pre-processed dataset is provided by [13] and pub-
licly available of the download1. The dataset use ResNet-
101 architecture pretrained on the ImageNet [10] for the
feature extraction of the visual domain. The features are
directly extracted from the pretrained model without any
finetuning. Also, the seen and unseen split proposed by [13]
ensures that unseen classes are not present in the ImageNet
dataset; otherwise, the zero-shot learning setting will be vi-
olated.

3. Training and Evaluation Protocols
In the training, first, we divide the training classes into

train and validation sets as mentioned in Table-1. We tune
the hyperparameter for the validation set that is discussed
below. Once we have the optimal hyperparameter for the
validation set we merge the train and validation set and

1http://datasets.d2.mpi-inf.mpg.de/xian/xlsa17.zip

retrain the model with the tuned hyperparameter and the
model is evaluated for the test samples. The hyperpa-
rameters are tuned for the Generalized Zero-Shot Learn-
ing (GZSL) only and same parameters are used for all the
other experiments like Zero-shot Learning, Fixed Continual
GZSL, and Dynamic Continual GZSL.

We have three hyperparameters: λ, η, and ϵ. We search
loss weight λ in the interval [0.5, 10] with step size 0.5.
Learning rate η is swept from 10−6 to 10−1 by a factor of
10, with learning rate decay with each epoch. We search
Reptile learning rate ϵ between [10−4, 10−1]. The final ob-
tained hyperparameter are given in Section 3.1.1. Note our
baseline results are reported from [2–4, 6]; we follow the
same settings and split.

3.1. Generalized Zero-Shot Learning (GZSL)

The simplest case we consider is the generalized zero-
shot learning (GZSL) setting [13]. In GZSL, classes are
split into two groups: classes whose data are available dur-
ing the model’s training stage (“seen” classes), and classes
whose data only appear during inference (“unseen” classes).
For both types, attribute vectors describing each class are
available to facilitate knowledge transfer. During test time,
samples may come from either class seen during training or
new unseen classes. We report mean seen accuracy (mSA)
and mean unseen accuracy (mUA), as well as the har-
monic mean (mhM) of both as an overall metric; harmonic
mean is considered preferable to simple arithmetic mean as
an overall metric, as it prevents either term from dominat-
ing [13]. The harmonic mean (mhM) can be defined as:

mhM =
2×mUA×mSA

mUA+mSA
(14)

Note that some GZSL approaches (notably, generative
ones) assume that the list of unseen classes and their at-
tribute vectors are available during the training stage, even
if their data are not; this inherently restricts these models to
these known unseen classes. Conversely, our approach only
requires the attributes of the seen classes. Also, in contrast
to the continual GZSL settings described below, all seen
classes are assumed available simultaneously during train-
ing.

3.1.1 Implementation Details

In the proposed model, Φa, Φs, and Φb are single-layer
fully connected (fc) neural networks with ReLU, Sigmoid,
and ReLU activation functions respectively. The dimen-
sion of each neural network (Φa, Φs, and Φb) is 2048.
The self-gating output on the given attribute goes to an-
other one-layer neural network of dimension 2048 → 2048
along with the BatchNorm layer. The output of this layer
is considered the projected visual feature, and in the visual

Table 1. The dataset and their split for the seen and unseen classes for the GZSL setting.

Dataset Seen
Classes

Train Val Unseen
Classes (Test)

Attribute
Dimension

Total
Classes

AWA1 [7] 40 30 10 10 85 50
AWA2 [13] 40 30 10 10 85 50
CUB [12] 150 100 50 50 312 200
SUN [9] 645 500 145 72 102 717
aPY [1] 20 15 5 12 64 32

space, we measure the similarity by cosine distance. For
all the datasets, the model is trained for the 200 epoch per
task. For the inner loop, we use Adam [5] optimizer with
a constant learning rate 0.0001. In the meta update, we
use Adam optimizer with an initial learning rate of 0.001,
and it decreases with the increase of the epoch at a rate
of (1 − current epoch/(total epoch − 1)). We follow
the same hyperparameter for all the datasets that shows the
model’s stability and applicability for the wide range of di-
verse datasets. The regressor network is also a 2048 dimen-
sional fully connected layer, and MMR uses λ = 5.0.

3.2. Fixed Continual GZSL

The setting proposed by [4] divides all classes of the
dataset into K subsets, each corresponding to a task. For
task Tt, the first t of these subsets are considered the seen
classes, while the rest are unseen; this results in the number
of seen classes increasing with t while the number of un-
seen classes decreases. Over the span of t = 1, ...K, this
simulates a scenario where we eventually “collect” labeled
data for previously unseen classes. Note that in contrast to
the typical GZSL setting, only data from the tth subset are
available; previous training data are assumed inaccessible.
The goal is to learn from this newly “collected” data with-
out experiencing catastrophic forgetting. As in GZSL, we
report mSA, mUA, and mH, but at the end of K − 1 tasks:

mSAF = 1
K−1

∑K−1
i=1 Acc(Di

ts(c
s
≤i),A(cs≤i)) (15)

mUAF = 1
K−1

∑K−1
i=1 Acc(Di

ts(c
u
i),A(cui)) (16)

mhMF = 1
K−1

∑K−1
i=1 H(Di

ts(c
s
≤i),Di

ts(c
u
i),A) (17)

where Acc represents per class accuracy, Di
ts(c

s
≤i) and

A(cs≤t) are the seen class test data and attribute vectors re-
spectively during the ith task. Similarly Di

ts(c
u
i) and A(cui)

represents the unseen class test data and attribute vectors
during the ith task. H is the harmonic mean of the accu-
racies obtained on Di

ts(c
s
≤i) and Di

ts(c
u
i). We calculate the

metric up to task K − 1, as there are no unseen classes for
task K, resulting in standard supervised continual learning.

3.3. Dynamic Continual GZSL

While it’s not unreasonable that previously unseen class
may become seen in the future, the above fixed continual
GZSL evaluation protocol assumes that all unseen classes
and attributes are set from the beginning, which may be un-
realistic. An alternative framing of continual GZSL is one
in which each task consists of its own disjoint set of seen
and unseen classes, as proposed by [2]. Such a formulation
does not require all attributes to be known a priori, allowing
the model to continue accommodating an unbounded num-
ber of classes. As such, in contrast to the fixed continual
GZSL, the number of seen and unseen classes both increase
with t. As with the other settings, we report mSA, mUA
and mH:

mSAD = 1
K

∑K
i=1 Acc(Di

ts(c
s
≤i),A(cs≤i)) (18)

mUAD = 1
K

∑K
i=1 Acc(Di

ts(c
u
≤i),A(cu≤i)) (19)

mhMD = 1
K

∑K
i=1 H(Di

ts(c
s
≤i),Di

ts(c
u
≤i),A) (20)

where Acc represents per class accuracy, Di
ts(c

s
≤i) and

A(cs≤t) are the seen class test data and attribute vectors
during ith task. Similarly Di

ts(c
u
≤i) and A(cu≤i) represents

the unseen class test data and attribute vector during the ith

task. Detailed splits of the seen and unseen class samples
for each task are given in the supplementary material.

3.3.1 Task Details

The AWA1 and AWA2 datasets contain 50 classes, which
are divided into five tasks of ten classes each. We divide
717 classes of the SUN dataset into 15 tasks; the first three
tasks contain 47 classes, and the remainder with 48 classes
each. The CUB dataset contains 200 classes; we divide all
classes into 20 tasks of ten classes each. The aPY dataset
contains 32 classes; we divide the dataset into four tasks
with eight classes in each task. The reservoir sample B for
the AWA1, AWA2, CUB, SUN and aPY are 25, 25, 10, 5
and 25 respectively.

Figure 1. Model performance vs. Memory growth for continual GZSL on the CUB dataset, Left: Represents the Fixed Continual GZSL
setting described in Section 3.2, Right: Represents the Dynamic Continual GZSL setting described in Section 3.3.

4. Ablation Studies
We conduct extensive ablation studies on the proposed

model’s different components, observing that each of the
proposed components play a critical role. We show the
effects of different components on the AWA1 and CUB
datasets in the fixed continual GZSL setting, with more ab-
lation studies for dynamic continual GZSL in the supple-
mentary material.

4.1. Reservoir size vs Performance

To overcome catastrophic forgetting, the model uses a
constant-size reservoir [8] to store previous task samples;
with more tasks, the number of samples per class decreases.
The reservoir size plays a crucial role in model perfor-
mance. Figure 1, we evaluate the model’s performance
for both fixed and dynamic continual GZSL. We observe
that for different reservoir sizes {1, 3, 6, 9, 14}×#classes,
the proposed model shows consistently better results than
recent models. For fixed and dynamic continual GZSL,
#classes is S + U and S, respectively.

4.2. t-SNE Visualization

Figure 2 shows the t-SNE plot for the AWA2 dataset.
The attributes are projected to the visual space, and in the
visual space, we do the t-SNE plot for all the samples. Here
we observe that the projected attribute features closely cor-
respond to the visual data space.

Figure 2. t-SNE plot for the unseen classes AWA2 dataset

Table 2. GZSL result when incorporating the with generated sam-
ples from MZSL [11]

AWA1 CUB
mSA mUA mH mSA mUA mH

MAIN 77.9 71.9 74.8 58.7 65.9 62.1
MAIN+MZSL [b] 75.3 70.1 72.6 57.6 61.7 59.5

4.3. Incorporating Generative model in the pro-
posed approach

As we know that the generative model shows a promis-
ing result for the GZSL setting. Here a question arises if
we combined the generative and discriminative approaches,
how will the model behave? To answer the above question,
we perform the experiment where the generated samples of
the unseen classes are also incorporated into the model dur-
ing training. We observe that doing so would result in sim-
ilar disadvantages as our generative baselines: slower train-
ing and reduced flexibility. The result is shown in Table 2
where we use MZSL [11] model to generate the unseen
class samples. We observe that we still surpass all baselines
with generated samples, but it does not help either. We sus-
pect this is due to a mismatch between real and generated
samples.

References
[1] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth.

Describing objects by their attributes. In 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1778–1785. IEEE, 2009.

[2] Chandan Gautam, Sethupathy Parameswaran, Ashish
Mishra, and Suresh Sundaram. Generalized continual zero-
shot learning. arXiv preprint arXiv:2011.08508, 2020.

[3] Chandan Gautam, Sethupathy Parameswaran, Ashish
Mishra, and Suresh Sundaram. Generative replay-based con-
tinual zero-shot learning. arXiv preprint arXiv:2101.08894,
2021.

[4] Skorokhodov Ivan and Elhoseiny Mohamed. Class normal-
ization for zero-shot learning. In International Conference
on Learning Representations, 2021.

[5] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[6] Hari Chandana Kuchibhotla, Sumitra S Malagi, Shivam
Chandhok, and Vineeth N Balasubramanian. Unseen classes
at a later time? no problem. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9245–9254, 2022.

[7] Christoph H Lampert, Hannes Nickisch, and Stefan Harmel-
ing. Learning to detect unseen object classes by between-
class attribute transfer. In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 951–958. IEEE,
2009.

[8] David Lopez-Paz, Ranzato, Marc’Aurelio, and D Dummy.
Gradient episodic memory for continual learning. In Ad-
vances in Neural Information Processing Systems, pages
6467–6476, 2017.

[9] Genevieve Patterson and James Hays. Sun attribute database:
Discovering, annotating, and recognizing scene attributes.
In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2751–2758. IEEE, 2012.

[10] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. IJCV, pages 211–252,
2015.

[11] Vinay Verma, Kumar, Dhanajit Brahma, and Piyush Rai. A
meta-learning framework for generalized zero-shot learning.
Association for the Advancement of Artificial Intelligence,
2020.

[12] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

[13] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and
Zeynep Akata. Zero-shot learning-a comprehensive evalu-
ation of the good, the bad and the ugly. IEEE transactions
on pattern analysis and machine intelligence, 2018.

