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Abstract

This supplementary file contains additional qualitative
results and more detail on experiments for TEGLO. We also
detail the model architecture and training setup.

S1. Network architecture details

TEGLO Stage-1 denoted as N consists of a latent table,
StyleGANv2 [10] generator layers, a 2-layer tri-plane de-
coder, a differentiable volume rendering module and a light
weight camera predictor. For the experiments in this work,
we use 512-dimensional latents in the latent table, and fol-
lowing [2], the output from the StyleGANv2 generator is
of shape 256 × 256 × 96 giving us k = 32-channel tri-
planes. Note that despite the use of a fixed size tri-plane,
TEGLO enables arbitrary resolution synthesis as we em-
ploy a GLO-based auto-decoder training regime. As noted
in the main paper, this also enables single-view 3D recon-
struction at any resolution. Table.(S1), includes the details
for the camera predictor network.

Table S1. Camera Predictor.

Layer Kernel Filters Stride Activation
Conv 2D 3 128 2 LeakyReLU
Conv 2D 3 64 2 LeakyReLU
Conv 2D 3 32 2 LeakyReLU
Conv 2D 3 16 2 LeakyReLU
Dense - 25 - Linear

TEGLO Stage-2 consists of a latent mapping network
(L), a dense correspondence network (M) and a basis net-
work (C). We describe the network details in Fig.(S2). M
is a LipMLP [13] with a Lipschitz regularizer at every layer
to encourage Lipschitz continuity with respect to the inputs.
Note that the same network implementation is used for all
experiments - FFHQ [10], CelebA-HQ [8, 14], AFHQv2-
Cats [6, 9] and SRN-Cars [3, 4].

∗These authors contributed equally to this work.

Figure S1. Correspondence maps - Establishing dense corre-
spondence between 3D objects in the 2D canonical space.

S2. Training details

In TEGLO Stage-1, to train N , we use the single-view
image dataset and the approximate pose obtained from
the shape-matching least-squares optimization described in
Sec.(4) in the main paper following the procedure in [15].
We train N for 500K steps using the Adam optimizer [11]
on 8 NVIDIA V100 GPUs (16 GB VRAM each) taking a
total of 46 hours to complete training at 2562 resolution. We
also employ an exponential learning rate decay from 5e-4 to
1e-4. In each train step, we use latent wi to condition the
NeRF to reconstruct the object (oi ∈ I). Then, we use the
loss LN = LRGB +LPerceptual +LCamera to train the network.

To train TEGLO Stage-2, we first render a dataset D
with five camera views: ei = {vf , vl, vr, vt, vb} for that
object. In this work, we render 1000 identities for D giv-
ing us 5000 total views. We train TEGLO Stage-2 for 1
Million steps (1000 epochs) using the Adam [11] optimizer
on 8 NVIDIA V100 GPUs (16 GB VRAM each) taking a
total of 50 hours to complete training. In each train step,
we use the latent wi as input to L, 3D surface points (pi)
and shape-code from L as input to M, and the mapped
canonical coordinate points from M as input to C. We
compute the LStage2 loss using the output RGB (ri), sur-
face normals (si), and surface points (pi) with the respec-
tive ground-truth {{r̂i, ŝi, p̂i} ∈ ei} ∈ D. The learned
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Figure S2. TEGLO Stage-2 Network Architecture Details.

dense correspondences are then used for TEGLO inference
to extract the object texture. We show qualitative results for
the correspondence maps in Fig.(S1) where canonical co-
ordinate points from different posed images are mapped to
the same location in the canonical coordinate map (canon-
ical coordinate points are output from M). Further, the
quantitative results in Table.(1) and Table.(2) show a signif-
icant improvement in PSNR and LPIPS for reconstruction
- demonstrating the effectiveness of the dense correspon-
dences learned by TEGLO Stage-2 for texture representa-
tion and tasks such as texture transfer and texture editing.

S3. Testing details

Test data inference and single view 3D reconstruction:
To train TEGLO Stage-1 for faces, we use the CelebA-HQ
dataset [8, 14] with 26K training images and optimize the
latent table. We use the remaining 4K images as the test
set. For single view 3D reconstruction and inference, we
randomly sample 1K images from the training set and ren-
der five views to train TEGLO Stage-2. To evaluate on
the test data, we invert the image by optimizing its latent
for 200 steps while keeping the network parameters frozen.
Then, we render five camera views and back-project to ob-
tain the surface points. We then map the surface points to
the canonical coordinate space to register the predicted pix-
els for those surface points. Similarly, we also map the 3D
surface points from the GT camera pose to the canonical
space and register GT pixels for those surface points.

Our quantitative results demonstrate the effectiveness of
the dense correspondences learned by TEGLO Stage-2 in
mapping the 3D surface points to the canonical coordinate
space. Since we map the pixels from the original image onto
the texture space, we accurately preserve high frequency
details with multi-view consistency. Hence, for quantita-
tive metrics such as PSNR, which is computed on the nor-

malized pixel values, we observe significantly higher values
for TEGLO compared to previous methods. We draw the
reader’s attention to Table.(5) in the main paper where we
report the 3D consistency metric. As described above, the
effectiveness of our formulation enables TEGLO to signif-
icantly outperform the baseline methods. We include qual-
itative results for test data inference and single view 3D re-
construction in Fig.(S10, S11, S13, S15).

S4. Ablations

Using LCamera loss. EG3D [2] conditions the generator
and discriminator with the camera pose to enable 3D con-
sistent novel view synthesis. As noted in the main paper,
the pose-conditioned generator does not completely disen-
tangle the camera pose from appearance leading to artifacts
such as facial expressions/eyes following the camera. In
TEGLO Stage-1, we use the LCamera,LRGB and LPerceptual
losses to train N . An ablation experiment without the cam-
era prediction loss led to 2D banner artifacts. This is quali-
tatively represented in Fig.(S3) for “Views without LCamera”
with flat and inconsistent geometries for different camera
angles. However, the results for training N using LCamera
show multi-view consistent representations demonstrating
the effectiveness of using the simple camera prediction loss.
Furthermore, we show that the rendered orbits do not have
expressions/eyes following the camera in ‘.gif‘ files in the
supplementary folder. Qualitative results for novel view
synthesis are also presented in Fig.(S3, S4, S5, S10, S9,
S12, S13, S14, S15).

TEGLO Stage-2 with LCoord loss only. Previous work
AUV-Net [5] states that methods [7,12] that do not use color
for learning dense correspondences may learn sub-par tex-
ture representations. To verify, we train TEGLO Stage-2
with only LCoord reconstruction loss instead of LStage2 =
LCoord +LCoord +LCoord reconstruction losses. The qualita-
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Figure S3. Ablation - LCamera for TEGLO Stage-1 training.

tive results are presented in Fig.(S14) comparing TEGLO-
3DP with TEGLO and other baseline results. Of particular
interest is Fig.(S4) with qualitative results for TEGLO and
TEGLO-3DP including the texture image. We note that the
reconstruction and novel view synthesis results are nearly
identical. However, we also observe TEGLO-3DP includ-
ing a wayward texture representation near the hair region.
While the dense correspondences map the surface points
to the appropriate RGB image pixels, there is a scope for
null pixel artifacts around the hair region when using NNI.
While the 3D reconstruction and novel view synthesis for
TEGLO-3DP and TEGLO do not differ, we note the poten-
tial for black pixels to be obtained in novel view synthesis
leading to lowered qualitative and quantitative results.

Limitations. As mentioned in the main paper, train-
ing TEGLO involves a computational overhead. Further,
TEGLO is only able to map target image pixels spanning
the target image and hence there may be artifacts for cam-
era views with minimal mapped target image pixels. For
example, the texture (TGT) in row-4 in Fig.(S15) includes
missing pixels near the lower jaw region. In the last column
in row-4, the novel rendered view does not include any tar-
get image pixels for the ear. On a similar note, in row-2,
column-7 in Fig.(S12), the novel view shows a slight twist
in the nose geometry partially due to the thin veil on the
face which could not be accounted for in Stage-1.

K-d tree and NNI for textures. In the main paper, we
discuss the necessity of the K-d tree and Natural Neighbor
Interpolation (NNI) [16] to prevent aliasing artifacts and en-
abling unambiguous texture image indexing to obtain the
RGB values for each surface point. As noted in the main
paper, our formulation uses the K-d tree and NNI to interpo-
late and index into the texture space with sparse “holes”. In
Fig.(S6), we depict the process to interpolate sparse holes.
Each cell in the 5x6 grid represents a discrete pixel in the
texture space and the red dot represents a canonical coordi-
nate point. We include the three issues for better context:

1. The canonical coordinate points may not be aligned to
the pixel centers and storing them in the discretized
texture space may lead to imprecision.

2. There may be multiple canonical coordinates mapped
to a discrete integral pixel wherein some coordinates

may need to be dropped for an unambiguous texture
indexing - leading to loss of information.

3. Some pixels may not be mapped to by any canoni-
cal coordinates, creating a “hole” in discretized space.
This is represented by “X” in the grid in Fig.(S6).

The K-d tree allows extracting multiple neighbors by
querying with canonical coordinate points and also enables
indexing the texture using floating point values. Hence, us-
ing a K-d tree to store the texture helps address (1) and (2).
Further, using a K-d tree in conjunction with Natural Neigh-
bor Interpolation (NNI) effectively addresses (3). Natural
Neighbor Interpolation (NNI) is formulated as follows:

NNI(x) =
n∑

i=0

wi(x)× f(xi) (1)

wi(x) =

1
di(x)

n∑
j=0

1
dj(x)

(2)

Where x is the query point, wi(x) is the simplified
Laplace weight based on inverse distances to n neighbors
corresponding to the polygon potentially encroached by the
query point in the Voronoi tessellation plot, and f(xi) repre-
sents the extracted texture pixels. Storing the texture in the
K-d tree and using Natural Neighbor Interpolation enables
accurate and unambiguous (property of NNI using tessella-
tion plot) floating point indexing into the texture to obtain
the RGB color. We also note in the main paper about K-d
tree + NNI enabling robustness to “holes” in the texture. To
verify the utility of K-d tree + NNI we design an experiment
where the texture is stored as an image and indexed using
bi-linear interpolation. The qualitative results are presented
in Fig.(S5) where tIMG is the texture with mapped ground
truth pixels stored as an image, and tGT is the TEGLO tex-
ture stored as a K-d tree. We observe that the novel view
synthesis using tIMG which includes clipping the query in-
dices into the texture image size range and bi-linear inter-
polation for indexing leading to several aliasing artifacts.
This is because the canonical coordinate points may not
be aligned to the pixel centers and storing them in the dis-
cretized texture space may lead to imprecision which man-
ifests as aliasing in novel view rendering. We further note
that the quantitative results for test set reconstruction using
tIMG is 30.828 dB PSNR and 0.0823 for LPIPS at 2562 reso-
lution for CelebA-HQ data. In contrast, novel view synthe-
sis using tGT leads to a reduction in aliasing artifacts with
quantitative results of 86.2 dB PSNR and 7.4e-7 LPIPS for
test set reconstruction of CelebA-HQ images at 2562 reso-
lution (refer Fig.(S5) and the accompanying ‘.gif’ files).

S5. Qualitative results
We present qualitative results for texture transfer in

Fig.(S7, S8). We present qualitative results for texture edits
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Figure S4. Ablation - Qualitative comparison with TEGLO-3DP (TEGLO Stage-2 with 3D surface point reconstruction only)
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Figure S5. Texture ablation - Qualitative comparison with texture
stored as an image indexed with bi-linear interpolation.
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Figure S6. Interpolating textures with sparse “holes” - Depict-
ing the KD-Tree and Natural Neighbor Interpolation (NNI) to in-
terpolate “holes” (if any) in the texture for novel view synthesis.

and textured synthesis for AFHQv2-Cats in Fig.(S10), for
SRN-Cars in Fig.(S11) and for CelebA-HQ in Fig.(S15).
We also present single-view textured 3D reconstruction re-
sults for TEGLO trained on FFHQ data and evaluated on
CelebA-HQ image targets - focus on complex details such
eyeglasses and make-up - in Fig.(S13). Further, we also
present comparative qualitative results with baselines and
TEGLO-3DP (TEGLO Stage-2 trained with only LCoord

loss) in Fig.(S14). Lastly, we present qualitative results for
high-resolution rendering at 10242 resolution in Fig.(S16)
and show novel view synthesis with a specific focus on
high-frequency details such as freckles (pigments under the
skin) in row-1, make-up and jewelry in row-2, hair and
beard in row-3, fine skin details in row-4 and wrinkles in
row-5.

S6. Ethical considerations
One of the motivating goals for TEGLO stems from the

need for photorealistic 3D reconstruction of objects from
single-view image collections. As an example, [5] use
Tripleganger heads [1] - a dataset containing 515 3D meshes
faces at a high cost-per-scan requiring a custom commer-
cial license for use. Similarly, [17] is a dataset of 938 tex-
tured meshes of heads made available at no cost. However,
the authors allude to the demographic bias in compiling the
data, the 68 DSLR camera setup, and the 6 month effort
involved in dataset capture - all of which do not scale and
has a high potential for bias and privacy issues. TEGLO
enables high-fidelity 3D reconstruction and novel view syn-
thesis from single-view image collections which alleviates
these issues and also improves access to high quality data to
the broader research community. Hence, TEGLO enables
rendering a dataset of diverse objects (improving fairness
and mitigating bias) and also reduces the need for large
scale data collection (alleviating privacy issues). Further,
we acknowledge the potential misuse of TEGLO and hence
only make available the code for reproducibility purposes.
In alignment with the motivating goals for TEGLO, we will
not make available any trained weights for our method.

S7. Efficient dataset rendering
For 3D high-fidelity data rendering from single-view im-

age collections of objects, TEGLO enables arbitrary resolu-
tion synthesis. Since the dense correspondences are learned
point-wise (i.e. using pj), there is no spatial constraint in



queryingM for the canonical coordinate point. Hence, we
render images of any size by first dividing the image pix-
els into 4 tiles, then obtain the surface points from TEGLO
Stage-1, map the surface points to the canonical coordinate
space usingM and then index into the texture to obtain the
RGB color value. Then, after all the tiles are computed, we
can combine the divided computations into a single image
of high-resolution. The orbit gif files with 60-120 frames
each and the high-resolution frames at 10242 resolution in
Fig.(S16) are rendered using this approach.
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Figure S7. Texture transfer - Qualitative results for texture trans-
fer with CelebA-HQ. (Top row shows CelebA-HQ image targets).
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Figure S8. Texture transfer - (a) Qualitative results for texture
transfer with CelebA-HQ. (Top row shows CelebA-HQ image tar-
gets). (b) Keypoint correspondences in the canonical space.

Figure S9. Geometry results - Target view reconstruction geom-
etry for CelebA-HQ with hat and eyeglasses.

Novel ViewsTarget Image Reconstruction

Figure S10. Textured synthesis - Target view reconstruction and
novel view synthesis for AFHQv2-Cats.
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Figure S11. Textured synthesis - Target view reconstruction and
novel view synthesis for SRN-Cars.
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Figure S12. Complex geometry and texture - Qualitative results for textured novel view synthesis.
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Figure S13. Single view 3D reconstruction - Results for TEGLO trained on FFHQ data and evaluated on CelebA-HQ image targets.
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Figure S14. Qualitative results - Comparison with relevant 3D-aware generative baseline methods at 2562 resolution for CelebA-HQ.
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Figure S15. Textured synthesis - Target view reconstruction and novel view synthesis for CelebA-HQ.
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Figure S16. High resolution rendered views - Qualitative results for novel views in high-resolution with high-frequency details such as
freckles, jewelry, make-up, hair, fine details and wrinkles.
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