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1. Related Work: Zero-shot learning with VLM
CLIP [21] pioneers the research of building a vision-

language model that can be used for zero-shot image clas-
sification, followed by other works with a different training
scheme [7,22,27] or supervision signals [2,12,18,26]. After
pre-training on hundreds of millions of web-crawled image-
caption pairs, these models obtain the transfer ability to
directly conduct inference on a wide range of downstream
datasets. Recent research trends also push the boundaries of
VLM applications into more challenging tasks such as zero-
shot object detection [11,31] and instance segmentation [30].
In this paper, we further extend these efforts by exploring a
new task - zero-shot HOI detection, with knowledge distilla-
tion from VLM for relationship understanding.

2. Spatial Feature Generation
For each pair of human and object proposals ⟨xh, xo⟩,

we follow the similar pipeline as [28] to compute their spa-
tial feature vsp ∈ RD. This involves encoding the spatial
information of their bounding boxes, including center coordi-
nates, heights, widths, aspect ratios, and area sizes. All these
values are normalized by the corresponding dimensions of
the image. Additionally, we incorporate the intersection over
union (IoU) to represent the pairwise relationships and char-
acterize their distance. All these spatial cues are encoded
with a multi-layer perceptron to obtain the spatial feature
vsp.

3. Ablation Studies of Multi-level Knowledge
Distillation without CLIP Components

To isolate and analyze the impact of CLIP-oriented repre-
sentation learning and CLIP supervision, we perform addi-
tional ablation studies. We begin with a simpler experimental
setup, where our multi-branch network does not use CLIP
visual and textual encoders. In this setup, both the visual
encoder and HOI embedding are randomly initialized.

As shown in Table 1, all the results exhibit a substan-
tial decrease compared to the results in the main paper (we

Table 1. Ablation study of multi-level incorporation on HICO-
DET dataset. Rand means our model is randomly initialized, and
CLIP indicates that the visual encoder and HOI embedding are
provided by CLIP. The union branch is added with a late fusion
strategy.

Branch mAP (%)
h-o union global Full Rare Non-Rare

R
an

d ✓ - - 6.31 5.21 6.63
✓ - ✓ 8.78 5.52 9.76
✓ ✓ ✓ 8.88 5.68 9.83

C
LI

P ✓ - - 10.48 9.45 10.78
✓ - ✓ 15.84 17.91 15.21
✓ ✓ ✓ 17.12 20.26 16.18

replicated the results from Table 3 for a clear comparison).
Besides, the mAP in non-rare classes is higher than in rare
classes, even with the same supervision signals. This phe-
nomenon demonstrates the integration of CLIP components
into our model design facilitates the transfer of its general-
ization capability to HOI representation.

4. Results comparison with existing works
In Table 2, we present a comprehensive set of results that

encompasses a broader array of existing works in the realm
of HOI detection.

5. More Visualizations
In Figure 1, we present additional HOI predictions follow-

ing the same visualization process as Figure 4 in our main
paper. We observe the same phenomena in both success and
failure cases. Notably, our model excels in recognizing chal-
lenging HOIs, particularly when the human/object regions
are small or occluded. This success can be attributed to the
integration of CLIP, which enables our model to leverage
contextual information and gain a better understanding of
the surrounding environment.
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Table 2. Results comparison of different methods on HICO-DET test set. †means re-implementation in [24]. Here FS, WS, and ZS
indicate fully-supervised, weakly-supervised, and zero-shot HOI detection methods, respectively. The notation (D) means the visual encoder
or the detector is pre-trained on dataset D, D∈ {COCO, HICO-DET, YFCC-15M}.

S Methods Visual Encoder Detector HICO-DET (%)
Full Rare Non-Rare

F
S

InteractNet [5] RN50-FPN (COCO) FRCNN (COCO) 9.94 7.16 10.77
iCAN [4] RN50 (COCO) FRCNN (COCO) 14.84 10.45 16.15
TIN [15] RN50-FPN (COCO) FRCNN (COCO) 17.22 13.51 18.32
PMFNet [25] RN50-FPN (COCO) FRCNN (COCO) 17.46 15.56 18.00
DJ-RN [13] RN50 (IN-1K&COCO) FRCNN (COCO) 21.34 18.53 21.18
IDN [14] RN50 (IN-1K&COCO) FRCNN (HICO-DET) 26.29 22.61 27.39
SCG [28] RN50-FPN (IN-1K&HICO-DET) FRCNN (HICO-DET) 31.33 24.72 33.31
HOTR [8] RN50+Transformer (COCO) DETR (HICO-DET) 25.10 17.34 27.42
QPIC [23] RN101+Transformer (COCO) DETR (COCO) 29.90 23.92 31.69
CATN [3] RN50+Transformer (IN-1K&HICO-DET&COCO) DETR (HICO-DET) 31.86 25.15 33.84
MSTR [9] RN50+Transformer (COCO) DETR(HICO-DET) 31.17 25.31 33.92
DisTr [32] RN50+Transformer (IN-1K&COCO) DETR (HICO-DET) 31.75 27.45 33.03
IF [17] RN50+Transformer DETR (HICO-DET) 33.51 30.30 34.46
CPC [20] RN50+Transformer DETR (COCO) 29.63 23.14 31.57
SSRT [6] R101+Transformer (COCO) DETR (COCO) 31.34 24.31 33.32
GEN-VLKT [16] RN50+Transformer (HICO-DET) DETR (HICO-DET) 33.75 29.25 35.10
HOICLIP [19] RN50+Transformer (HICO-DET) DETR (HICO-DET) 34.69 31.12 35.74

W
S

Explanation-HOI† [1] ResNeXt101 (COCO) FRCNN (COCO) 10.63 8.71 11.20
MX-HOI [10] RN101 (COCO) FRCNN (COCO) 16.14 12.06 17.50
PPR-FCN† [29] RN50 (YFCC-15M) FRCNN (COCO) 17.55 15.69 18.41
PGBL [24] RN50 (YFCC-15M) FRCNN (COCO) 22.89 22.41 23.03

ZS

baseline RN50 (YFCC-15M) FRCNN (COCO) 10.48 9.45 10.78
ours RN50 (YFCC-15M) FRCNN (COCO) 17.12 20.26 16.18

ride-horse ours: 23.5% base: 26.7%

staddle-motorcycle ours: 3.5% base: 1.8%

hold-book ours: 4.0% base: 27.5%

shier-sheep  ours: 1.5% base: 24.8%

ride-car ours: 4.6% base: 35.4%

wear-backpack  ours: 1.9% base: 30.8%

tag-person ours: 0.4% base: 0.5%

direct-car   ours: 0.2%  base: 0.3%

(a) (b) (c) (d)

Figure 1. More visualization of the HOI detection results. Green percentiles signify the model’s confident HOI predictions, and red
percentiles denote the negative HOI predictions that the model treats as background.
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