
Supplementary Material: Continual Test-time Domain Adaptation via Dynamic
Sample Selection

1. Experiments

1.1. Imagenet-R experiment

ImageNet-R [2] encompasses a diverse array of shifts of
ImageNet classes. These shifts include cartoons, deviant
art, graffiti, embroidery, graphics, origami, paintings, pat-
terns, plastic objects, plush objects, sculptures, sketches,
tattoos, toys, and video games. The dataset comprises 200
classes and a total of 30,000 images. Here, we show the
CTDA performance result of our DSS method and other
baseline approaches, and experiments are conducted us-
ing the standard ResNet-50 model, pretrained on ImageNet
through cross-entropy loss. In general, all baseline meth-
ods show a certain performance improvement compared to
direct testing using the source model. The performance of
Tent, Conjugate PL, and CoTTA methods showcases a de-
gree of similarity, while the BN method slightly lags behind.
Notably, our proposed DSS method achieves the lowest er-
ror rate of 56%.

Method Error
Source 63.8
TENT-cont [6] 57.3
BN Adapt [3] 60.3
Conjugate PL [1] 57.3
CoTTA [7] 57.4
DSS (Ours) 56.0

Table 1. Classification error rate (%) on ImageNet-R [2]. The best
numbers are in bold.

1.2. Modelnet40-C experiment

ModelNet40-C [5] is a benchmark for assessing the robust-
ness of our proposed method on 3D point cloud data. In
this setting, 15 different forms of corruption are introduced
to the original test dataset of ModelNet40 [8]. For 3D ex-
periments, random rotation and translation are used in the
augmentation module to generate augmentation-weighted
pseudo-labels. As shown in Table 2, all methods reduce
error by a certain amount and DSS has the lowest error rate
in average.
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Method uniform gaussian background impulse upsampling rbf rbf-inv den-dec dens-inc shear rot cut distort oclsion lidar Mean
Source 14.7 18.8 95.3 33.3 15.0 29.5 27.6 12.9 10.5 42.7 72.8 14.9 34.8 56.3 59.0 35.9
TENT-cont [6] 15.3 15.6 92.1 26.6 17.5 26.5 25.1 16.0 13.0 37.7 58.7 17.1 32.6 54.1 56.9 33.7
CoTTA [7] 14.3 17.4 90.9 25.5 14.4 27.1 26.1 13.4 12.2 38.4 63.7 15.2 32.5 56.1 56.6 33.6
DSS 14.2 17.7 89.5 25.0 13.9 26.7 25.4 13.7 12.5 37.4 63.6 15.4 32.3 54.7 58.1 33.2

Table 2. Classification error rate (%) on ModelNet40-C. PointNet [4] is adopted as the backbone. The best numbers are in bold.


