Roadmap. The supplementary material is organized as fol-
lows. The details of LogME measurement for object de-
tection are described in A. More details of experiment up
in this work are described in Section B. Further, we pro-
vide more experimental results regarding the ranking of pre-
trained detectors in Section C.

A. LogME Measurement for Object Detection

In this work, we extend a classification assessment
method LogME [14] to object detection. In this section, we
will give detailed derivations of LogME for object detection
framework.

Different from image-level features used for assess-
ing classification task, we extract object-level features of
ground-truth bounding boxes by using pre-trained detec-
tors’ backbone followed by an ROIAlign layer [9]. In this
way, for a given pre-trained detector and a downstream task,
we can collect the object-level features of downstream task
by using the detector and form a feature matrix F', with
eachrow f, denotes an object-level feature vector. For each
f;, we also collect its 4-d coordinates of grounding-truth
bounding box b; and class label ¢; to form a bounding box
matrix B and a class label matrix C'.

For the bounding box regression sub-task, LogME mea-
sures the transferability by using the maximum evidence

p(B|F)=[ p(6|a)p(B|F, 3,0)d0, where  is the param-
eter of linear model. « denotes the parameter of prior dis-
tribution of 8, and 3 denotes the parameter of posterior dis-
tribution of each observation p(b;|f,, 3,0). By using the
evidence theory [5] and basic principles in graphical mod-
els [6], the evidence can be calculated as

p(B|F) = / p(0la)p(B|F, 5,0)d6

_ /p(ma)r[p(bim,ﬂ,e)de

i=1
(B ¥ a\% ~20T0- 5| 5,6-b;|2
—(g) (37) /e .

(€]

where M is the number of objects and D is the dimension
of object features. When A is positive definite,

D
/ef%(GTA9+bT9+°)d9 _ %eleA 1b7c_ )

LogME takes the logarithm of Eq. (1) for simpler calcu-
lation. So the transferability score is expressed by

LogME =log p(B|F)
M D M
:?logﬂ+§logaf?log27r 3)

B 2 QT 1
2||Fm B||5 ym m 2log|A|.

where A and m are
A=al +BFTF,m=pBA"'F'B, “4)

where A is the Ly-norm of F', and m is the solution of 6.
Here o and 8 are maxmized by alternating between evalu-
ating m, y and maximizing «, 5 with m, v fixed [4] as the
following:

M —~

. ®
|Fm — BI|3

Bo'z Y
e
7= Za+ﬂ01 me’B

where o;’s are singular values of FTF. With the optimal
a* and B*, the logarithm maximum evidence L (a*, 8*)
is used for evaluating the transferability. Considering
L (a*, B*) scales linearly with the number of objects M, it
is normalized as %, which is interpreted as the aver-
age logarithm maximum evidence of all given object feature
matrix F' and bounding box matrix B. LogME for classifi-
cation sub-task can be computed by replacing B in Eq. (3)
with converted one-hot class label matrix.

Nevertheless, optimizing LogME by Eq. (4) and Eq. (5)
is timely costly, which is comparable with brute-force fine-
tuning. So LogME further improves the computation effi-
ciency as follows. The most expensive steps in Eq. (4) are to
calculate the inverse matrix A~! and matrix multiplication
A~'FT which can be avoided by decomposing FTF. The
decomposition is taken by FTF = V diag{c}V”, where
V is an orthogonal matrix. By taking A = diag{(a+ B0)},
Aand A~ 'tunto A= al+SFTF =VAVT and A~ ! =
VA~1VT. With associate law, LogME takes a fast compu-
tation by A~ FTB = (V (A—l (VT (FTB)))). To
this end, the computation of m in Eq. (4) is optimized as

mea(v (U (T (EB) o

B. Details of Experiment Setup

In this section, we include more details of our experiment
setup, including the source models and target datasets.
Implementation Details. Our implementation is based on
MMDetection [1] with PyTorch 1.8 [8] and all experiments
are conducted on 8 V100 GPUs. The base feature level
lo in Pyramid Feature Matching is set as 3. The ground
truth ranking of these detectors are obtained by fine-tuning
all of them on the downstream tasks with well tuned train-
ing hyper-parameters. The overall Det-LogME algorithm is
given in Algorithm 1.

Baseline Methods. We adopt 3 SOTA methods, KNAS
[12], SFDA [11], and LogME [14], as the baseline methods
and make comparisons with our proposed method. KNAS
is a gradient based method different from recent efficient as-
sessment method, we take it as a comparison with our gra-
dient free approach. SFDA is the current SOTA method on



Algorithm 1 Det-LogME

Input: pre-trained detector F, target dataset D;
Output: estimated transferability score Det-LogME

1: Extract multi-scale object-level features using pre-trained de-
tector F’s backbone followed by an ROIAlign layer and col-
lect bounding box coordinates and class labels:

FcRM*D BeRM*4 ¢ cRM

2: Find the match level features for all objects

: Apply center normalization on B to obtain B“"

4: Unify B°“" and C as a unified label matrix Y* by

pcen

— e
7(1‘C7yc7w65 hc), ey
N e’

(95}

Y*=|(0,0,0,0), ... (0,0,0,0)
~——— ——
st ci -th K -th

: Initialize o = 1,8 = 1, compute F7 F = V diag{c}V7™
: while « and § not converge do

Compute v = ZZD:1 aic,;lal , A = diag{(a+ Bo)}
Compute m = f3 (V (A_1 (VT (FTBCQ"))))

9: Expand m €R” to m e RDXAE) for matching Y*
10: Update o = —F—, f + HFmA_I];Zm‘@

11: end while

12: Compute U-LogME by

M

M D M
U-LogME =3 log B+ — loga - — log27r

1
- EHFm - B““"||5 — EmTm — 3 log | 4],

2
where A = ol + BFTF

13: Downsample m to ' € RP** by reserving the real coordi-

Fm mBl,(ﬂfL
nates of B°“"*, compute IoU-LogME = ||Fm/U73wn|

14: Compute Det-LogME = U-LogME +p - IoU-LogME
15: Return Det-LogME

the classification task, so we formulate the multi-class ob-
ject detection as a object-level classification task for adapt-
ing SFDA. LogME is the baseline of our work. Here, we
describe the details for adapting these methods for object
detection task.

KNAS is originally used for Neural Architecture Search
(NAS) under a gradient kernel hypothesis. This hypothe-
sis indicates that assuming G is a set of all the gradients,
there exists a gradient g which infers the downstream train-
ing performance. We adopt it as a gradient based approach
to compare with our gradient free approach. Under this hy-
pothesis, taking MSE loss for bounding box regression as
an example, KNAS aims to minimize

1
Lw) = 2 @
where w is the trainable Welghts [bl, e b M}T is the
bounding box prediction matrix, B = [by, ..., by|7 is the

ground truth bounding box matrix, and M is the number of
objects. Then gradient descent is applied to optimize the

model weights:

9L(O(1))

O(t+1) = O

O(t) —n (®)
where ¢ represents the ¢-th iteration and 7 is the learning

rate. The gradient for an object sample ¢ is

o)

AL(O(t), )
9(O(t))

Then, a Gram matrix H is defined where the entry (4, j) is

(96,0 (b))
H,,;(t) = (8@(t)> (aeu)) ' (10

H, ;(t) is the dot-product between two gradient vectors
= ggg; and g; = C?dl(g((g . To this end, the gradient kernel
g can be computed as the mean of all elements in the Gram

matrix H:

M M 8131- T
9= M2ZZ< :><a®8> - b

As the length of the whole gradient vector is too long, Eq.
(11) is approximated by

Q M M b, (1) T
9= QM2ZZZ< ><3®()>- (12)

g=1i=1 j=1

where @ is the number of layers in the detection head, and
e’ 1s the sampled parameters from g-th layer and the length
of © is set as 1000 in our implementation. The obtained
gradient kernel g is regarded as the transferability score
from KNAS.

SFDA is specially designed to assess the transferability
for classification tasks, which is not applicable for single-
class detection datasets used in this work including SKU-
110K [3], WIDER FACE [13], and CrowdHuman [10]. It
aims to leverage the neglected fine-tuning dynamics for
transferability evaluation, which degrades the efficiency.
Given object-level feature matrix F'=|f;,..., f,]7, with
corresponding class label matrix C, we consider object de-
tection as an object-level multi-class classification task for
adapting SFDA.

To utilize the fine-tuning dynamics, SFDA transforms
the object feature matrix F' to a space with good class
separation under Regularized Fisher Discriminant Analy-
sis (Reg-FDA). A transformation is defined to project F'e
RM*D o FeRM*D" by a projection matrix U e RP*P’
with F := UT F. The project matrix is

U S,U|
|[UT[(1=NSw + M U|’

dy(U) g
do(U)

13)

U = argmax
U



Table 1. Ranking results of of six methods for 1% 33-choose-22 possible source model sets (over 1.9M) on 6 downstream target datasets.
Higher p., and Recall@1 indicate better ranking and transferability metric. As SFDA is specifically designed for classification task, it is
not applicable for the single-class task of CrowdHuman. The results of all three variants of our approach, U-LogME, IoU-LogME, and

Det-LogME are reported. The best methods are in red and good ones are in blue.

Measure Weighted Pearson’s Coefficient (p,,) Recall@1

Method KNAS SFDA LogME U-LogME  IoU-LogME Det-LogME ‘ KNAS SFDA LogME U-LogME  IoU-LogME Det-LogME
Pascal VOC 0.01+0.15  0.71+0.14  -0.04+0.16 -0.07+0.23  0.73£0.13  0.68+0.12 | 0.26+0.44 0.33+0.47 0.53+0.50 0.20+£0.40  0.34+0.47 0.411+0.49
CityScapes 0.15+£0.18  0.46+0.11  0.38+0.09  0.194+0.13  0.53+0.10  0.5540.09 | 0.53£0.50 0.00+£0.00 0.53+0.50 0.124+0.33  0.53+0.50  0.53+0.50
SODA -0.11£0.21  0.60+0.13  0.2840.13  0.12+0.13  0.65+0.12  0.66+0.11 | 0.00+£0.00 0.00+0.00 0.534+0.50 0.12+0.33  0.53£0.50  0.53+0.50
CrowdHuman | -0.21+0.13 N/A 0.08+0.19  0.11£0.17  0.314+0.08  0.30£0.08 | 0.00-0.00 N/A 0.65+0.48 0.58+0.49  0.65+0.48  0.65+0.48
VisDrone 0.15+£0.21  0.29+0.15  0.35+£0.10  0.12+£0.10  0.44+£0.12  0.4440.11 | 0.12+£0.32 0.34+0.47 0.17+£0.38 0.01£0.11  0.25+0.43  0.25+0.43
DeepLesion 0.08+0.18  -0.374+0.29  0.34+0.20  0.54+0.19 -0.17+£0.34  0.5040.16 | 0.01+£0.09 0.00+0.00 0.26+0.44 0.57+0.50  0.00+0.03 0.42+0.49
Average \ 0.01+£0.18  0.34+0.16  0.23+0.15 0.20+0.16  0.42+0.15  0.5240.11 \ 0.15£0.36  0.11+£0.31  0.44+0.50 0.27+0.44  0.38+0.49 0.46+0.50

Table 2. The transferability scores obtained from 6 metrics and fine-tuning mAP on Pascal VOC and CityScapes datasets. The last row is

the corresponding ranking correlation 7, for every metric.

Pascal VOC ‘ CityScapes

Model Backbone
KNAS SFDA LogME U-LogME IoU-LogME Det-LogME mAP ‘ KNAS SFDA LogME U-LogME IoU-LogME Det-LogME mAP
R50 2326E-01 0791 -6.193  -3223 0.482 1.199 84.5 | -2.093E+00 0879 -6257  -1.518 0.624 9229 419
R101 1.09SE-01 0809 -6.177  -3.160 0.492 1.258 84.5 | -1.791E+00 0887 -6258  -1478 0.624 9.289 423
Faster RCNN X101-32x4d  -4396E-02 0822 -6.146  -2.969 0.505 1380 852 | -2386E+00 0892 -6269  -1.397 0.622 9242 435
X101-64x4d  9.018E-01 0825 -6.129  -2.944 0.509 1.405 85.6 | -1.664E+00 0.894 -6270  -1.381 0.624 9353 4238
R50 -6438E-01 0795 -6232  -3203 0.481 1206 84.1 | -6.218E+00 0874 -6286  -1.514 0618 9.013 44.1
R101 2206E-01 0811 6222  -3.176 0.490 1.247 849 | -6.553E+00 0.883 -6289  -1.489 0.621 9.127 437
Cascade RCNN  x101.30x4d  -6.405E-01  0.826 -6.194  -3.024 0.503 1351 856 | -5.763E+00 0.891 6297  -1415 0.620 9.160 44.1
X101-64x4d  1.270E+00 0831 -6.190  -3.006 0.505 1.367 85.8 | -5.182E+00 0.891 -6290  -1.402 0.620 9.166 454
Dynamic RCNN  R50 -8.148E-03 0791 -6206  -2.875 0.483 1343 840 | 1.878E-01 0869 -6303  -1.352 0617 9.110 425
400MF 50S6E-01 0750 -6.162  -3387 0465 1.076 833 | 2401E01 0845 -6264  -1.647 0.606 8.400 399
800MF 6.691E-02 0758 -6.156  -3.295 0.468 1122 83.9 | -2308E+00 0855 -6279  -1.606 0.606 8.441 403
RegNet 1.6GF 152301 0770 -6.162  -3.232 0472 1.161 84.6 | -1.504E+00 0869 -6279  -1.553 0.613 8.767 418
3.2GF 6241E-02 0786 -6.170  -3.186 0.482 1215 855 | -3.148E-01 0877 -6269  -1.527 0.618 8.984 427
4GF 3.995E-01 0790 -6.166  -3.133 0.484 1.242 850 | -1451E+00 0878 -6278  -1.506 0.617 8.956 43.1
R50 3852E-02 0825 6122  -2.748 0511 1.490 86.1 | -6.647E-01 0889 -6246  -1.267 0.625 9.497 426
DCN RI101 9254E-02 0836 6155  -2.812 0516 1.481 86.5 | -2072E+00 0.894 -6253  -1.298 0.626 9503 43.1
X101-32x4d  7.048E-02  0.846 -6.100  -2.653 0.525 1577 86.9 | -7.308E-01 0899 -6253  -1.227 0.626 9571 435
RS0 1.023E+01  0.289 -6.093  -1.856 0.264 0.988 773 | 6343E+00 0492 -6434  -0.992 0491 4318 404
FCOS R101 5233E+00 0280 -6.032  -2.101 0262 0.884 794 | S277E+00 0515 -6426  -1.124 0491 4219 412
RI8 3404E-01 0733 6289  -2.928 0.442 1.177 809 | LISTE02 0844 -6411  -1438 0597 8.206 36.7
RS0 S1357E-01 0759  -6277  -2.975 0457 1213 84.1 | S439E-03 0867 -6370  -1.388 0.606 8.609 400
RetinaNet RI101 -L807E-01 0774 6259  -2972 0.467 1.246 844 | 4709E-02 0879 -6357  -1.374 0.612 8.854 40.6
X101-32x4d  -1.030E-01 0792  -6260  -2.763 0475 1.360 846 | 293502 0881 -6377  -1.308 0.608 8.762 412
X101-64x4d  -3.170E-01 0792  -6229  -2.722 0475 1376 853 | 2.304E-02 0886 -6366  -1.276 0.610 8.858 420
RS0 9.846E+03 0777 6267  -3.243 0456 1.102 847 | -1640E+04 0878 -6414  -1.595 0.602 8304 389
Sparse RCNN R101 2.104E+04 0795 6238  -3263 0.466 1.127 850 | 1.198E+04 0.884 -6396  -1.601 0.602 8.304 393
Deformable DETR ~ R50 8.873E+03 0794 5221  -2.295 0.462 1.501 87.0 | 1.363E+05 0.881 -5376  -1.065 0.673 11602 455
Faster RONNOI RS0 2038E+00 0724 6016  -4.100 0.443 0716 822 | 3288E+00 0837 -6260  -1.951 0.602 7.982 393
RetinaNet OI R50 2.045E-01  0.697 -6.195  -3335 0430 0.974 820 | L701E-01 0845 -6343  -1.624 0.600 8.177 39.5
SoCo RS0 3220E400 0703 6094  -3.062 0433 1.093 565 | 4.629E+01 0836 -6.237  -1473 0.606 8.536 41.7
InsLoc RS0 3153E-03 0566 6239 1592 0.424 1.649 867 | LO4IE02 0756 -6322  -0.738 0582 8.191 403
UP-DETR RS0 8205E+02  0.175 -6.267  -3.086 0.238 0.404 593 | -2.994E+02 0399 -6.485  -1.404 0.403 0455 30.9
DETReg RS0 6.832E+02  0.189 -5.999  -3.872 0.248 0.129 635 | -9335E+02 0427 -5.892  -1.958 0440 1.462 38.7
Tw 0.15 064 022 043 0.54 0.79 NA | 002 051 032 0.18 0.68 071 N/A

where dp(U) and d,,(U) represent between scatter of
classes and within scatter of each class, A€|0, 1] is a regu-
larization coefficient for a trade-off between the inter-class
separation and intra-class compactness, and I is an identity
matrix. The between and within scatter matrix Sy and S,
are difined as

K
S, = ZMC (ve —v) (ve — Z/)T
czl M,
(79 =) (79 )

Su=>_2.
c=11i=1

where v = Zf\il fiand v, = Zf\il fgc) are the mean of

all and c-th class object features.

(14)

With the intuition that a model with Infomin requires
stronger supervision for minimizing within scatter of every
class which results in better classes separation. A is instan-
tiated by A = exp~**(Sw) where a is a positive constant
and o(S,,) is the largest eigenvalue of S.,. For every class,

SFDA assumes }'EC) ~ N (UTVC, EC), where X, is the

. . »lC . . . .
covariance matrix of { fl(. )}f\icl. With projection matrix U,
the score function for class c is

c

Y 15)

de (f;) = f;'rUUTVc - %IJCTUUTI/C + log

Then, the final class prediction probability is obtained by



Table 3. The transferability scores obtained from 6 metrics and fine-tuning mAP on SODA and CrowdHuman datasets. The last row is the
corresponding ranking correlation 7,, for every metric.

SODA ‘ CrowdHuman
Model Backbone
KNAS SFDA LogME U-LogME IoU-LogME Det-LogME mAP ‘ KNAS SFDA LogME U-LogME IoU-LogME Det-LogME mAP
RS0 J1314E+00 0831 -5698  -2.148 0542 16546 347 | -1216E+01 N/A 6660  -0.116 0575 1357 414
R101 2.636E+00 0846 -5.679  -2.071 0.548 17121 350 | -L648E+01  N/A 6655  -0.111 0.577 1482 413
Faster RCNN X101-32xd4d  -2.516E+00 0852 -5.664  -1.924 0554 17643 357 | -T494E+00 N/A  -6620  -0.074 0586 2.081 412
X101-64x4d  -1226E+00 0856 -5.660  -1.914 0557 17900 364 | -9416E+00 N/A 6596  -0.045 0.592 2460 415
RS0 9.109E+00 0826 -5746  -2.129 0537 16183 353 | -1.958E+01 N/A 6681  -0.138 0.568 0.851 43.0
R101 -LI77E+01 0836 -5733 2,091 0543 16685 359 | 2723E+01 N/A 6683  -0.143 0.567 0.781 238
Cascade RCNN  x101.30x4d  -1.509E+01  0.846  -5709  -1.966 0.549 17245 368 | -L755E+01 N/A  -6.662  -0.126 0573 1.170 432
X101-64x4d -1277E+01 0851 -5733  -1.946 0552 17453 374 | -10S3E+01  N/A 6660  -0.121 0573 1225 437
Dynamic RCNN  R50 J1597E+00 0820 -5758  -1.871 0535 16169 352 | -5448E+00 N/A  -6674  -0.130 0.568 0900 418
400MF -L900E+00 0785 -5670  -2.300 0520 14767 325 | -1.393E+01 N/A  -6628  -0.099 0579 1619 380
S00MF JL512E+00 0803 -5.694  -2.239 0525 15206 342 | -8908E+00 N/A 6636  -0.099 0.578 1546 398
RegNet 1.6GF 2576E+00 0815  -5.668  -2.169 0537 16190 357 | -1.558E+01 N/A  -6653  -0.118 0573 1215 418
32GF 2.007E+00 0827 -5.682  -2.140 0538 16288 370 | -LS60E+01 N/A  -6.647  -0.106 0577 1438 417
4GF S1735E+00 0826 -5700  -2.097 0539 16380 370 | -L600E+01 N/A 6650  -0.111 0.576 1388 419
RS0 JLO77E+00 0844 5677  -1.736 0553 17632 353 | -1562E+01 N/A 6569  -0.013 0.602 3.121 43.1
DCN R101 8408E-01 0846 -5.6690  -1.786 0556 17874 353 | -1.O73E+01  N/A 6584  -0.033 0.596 2718 434
X101-32x4d  -1.797E+00 0859 -5.676  -1.655 0559 18189 360 | -7.I81E+00 N/A  -6494 0018 0614 3876 443
oS R50 J1287E-02 0510 -5729  -1.328 0415 6902 333 | -1263E+00 N/A 6578  -0.040 0.570 1046 356
R101 6980E-01 0541 -5688  -1.535 0413 6610 345 | -L60IE+00 N/A 6537  -0.006 0578 1.593 36.8
R18 2071E-02 0778 -5.846  -1.988 0510 14099 296 | 3.033E02 NA 6696  -0.161 0.554 0.008 358
RS0 7809E-01 0818 -5817  -1.885 0527 15528 339 | 3080E02 NA -6702  -0.168 0555 0.035 383
RetinaNet R101 J1857E-02 0828 -5.835  -1.874 0532 15877 340 | -1330E03 N/A 6699  -0.164 0556 0.121 386
X101-32xd4d  -1.033E-01 0833 -5.864  -1.794 0530 15766 342 | -4.154B-03 N/A  -6691  -0.157 0557 0.171 38.9
X101-64x4d  -2.995E-01 0839 -5851  -1.717 0537 16430 356 | 8897E-03 N/A  -6676  -0.147 0.562 0477 399
RS0 5.855E+04 0824 5892 -2256 0518 14636 359 | 4.174E+04 N/A  -6683  -0.154 0554 0009 386
Sparse RCNN R101 J1.934E+05 0833 -5869  -2255 0523 14991 363 | -1O77E+03 N/A 6676  -0.145 0557 0190 392
Deformable DETR RS0 9.691E+04 0820 4557  -1421 0.589 20697 388 | -3.523E+04 N/A 5447 0904 0.790 15536 453
Faster RONNOI RS0 2170B+01 0767 -5543 2756 0513 13942 328 | -6.768E+01 N/A  -6533  -0.006 0.601 3037 400
RetinaNet OI R50 2793E-01 0780 -5782 2278 0507 13741 334 | 7107E-03 N/A 6650  -0.104 0.571 1.077 385
SoCo RS0 S681E-01 0759 -5584 2,074 0517 14607 332 | -L68IE+01 N/A 6553  0.019 0.601 3065 406
InsLoc RS0 1.857B-02  0.691 -5750  -0.842 0.490 13092 314 | 7323E01 NA  -6652  -0.117 0.565 0690 407
UP-DETR RS0 4658E+02 0457 6040  -1.946 0338 0423 201 | 3.661E+02 N/A  -6613  -0.145 0555 0062 354
DETReg RS0 8563E+02 0467 -5584 2477 0371 2783 243 | -6686E+02 N/A 6202 0221 0.638 5498 410
Tw -0.44 043 022 0.03 0.66 0.65 NA | 047 NA 037 039 0.51 0.51 N/A
normalizing {d. (f;)} x with softmax function: IoU-LogME also performs well on 5 datasets. Regarding
5o (F2) Recall@1, our proposed Det-LogME outperforms previous
exp it .
p(ei|f,;) = (16) SOTA methods in average.

Zﬁil expéc(fi)

To this end, the transferability score is expressed as the
mean of p (¢; | ;) over all object samples by

M Z exp

LogME is following Eq. (3) described in Sec. A.

Se; (£4)

p(C|F)= a7)

exp5 (£ )

C. More Experimental Results

Ranking Performance. Except for Weighted Kendall’s tau
(Tw) and Top-1 Relative Accuracy (Rel@1), we also evalu-
ate the transferability metrics based on Weighted Pearson’s
coefficient (p,,) [2] and Recall@1 [7], as shown in Table
1. Weighted Pearson’s coefficient is used to measure the
linear correlation between transferability scores and ground
truth fine-tuning performance. Recall@1 is used to measure
the ratio of successfully selecting the model with best fine-
tuning performance. The evaluation is conducted on 1% 33-
choose-22 possible source model sets (over 1.9M). Regard-
ing p.,, we can draw the conclusion that Det-LogME out-
performs all three SOTA methods consistently on 6 down-
stream tasks by a large margin. The IoU based metric

Detailed Ranking Results. We provide detailed raw rank-
ing results of all 33 pre-trained detectors on 6 downstream
tasks, including the transferability scores, ground truth per-
formance (the average result of 3 runs with very light vari-
ance), and Weighted Kendall’s tau 7,,. The results are pro-
vided in the following tables. Table 2 shows results on Pas-
cal VOC and CityScapes, Table 3 shows results on SODA
and CrowdHuman, and Table 4 contains results on Vis-
Drone and DeepLesion.
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