
Roadmap. The supplementary material is organized as fol-
lows. The details of LogME measurement for object de-
tection are described in A. More details of experiment up
in this work are described in Section B. Further, we pro-
vide more experimental results regarding the ranking of pre-
trained detectors in Section C.

A. LogME Measurement for Object Detection

In this work, we extend a classification assessment
method LogME [14] to object detection. In this section, we
will give detailed derivations of LogME for object detection
framework.

Different from image-level features used for assess-
ing classification task, we extract object-level features of
ground-truth bounding boxes by using pre-trained detec-
tors’ backbone followed by an ROIAlign layer [9]. In this
way, for a given pre-trained detector and a downstream task,
we can collect the object-level features of downstream task
by using the detector and form a feature matrix F , with
each row f i denotes an object-level feature vector. For each
f i, we also collect its 4-d coordinates of grounding-truth
bounding box bi and class label ci to form a bounding box
matrix B and a class label matrix C.

For the bounding box regression sub-task, LogME mea-
sures the transferability by using the maximum evidence
p(B|F )=

∫
p(θ|α)p(B|F , β,θ)dθ, where θ is the param-

eter of linear model. α denotes the parameter of prior dis-
tribution of θ, and β denotes the parameter of posterior dis-
tribution of each observation p(bi|f i, β,θ). By using the
evidence theory [5] and basic principles in graphical mod-
els [6], the evidence can be calculated as

p(B |F ) =

∫
p(θ|α)p(B|F , β,θ)dθ

=

∫
p(θ |α)

M∏
i=1

p(bi|f i, β,θ)dθ

=

(
β

2π

)M
2 ( α

2π

)D
2

∫
e−

α
2
θT θ− β

2
∥fiθ−bi∥2 dθ,

(1)
where M is the number of objects and D is the dimension
of object features. When A is positive definite,

∫
e−

1
2 (θ

TAθ+bT θ+c)dθ =
1

2

√
(2π)D

|A| e
1
4
bTA−1b−c. (2)

LogME takes the logarithm of Eq. (1) for simpler calcu-
lation. So the transferability score is expressed by

LogME = log p(B|F )

=
M

2
log β +

D

2
logα− M

2
log 2π

− β

2
∥Fm−B∥22 −

α

2
mTm− 1

2
log |A|.

(3)

where A and m are

A = αI + βF TF ,m = βA−1F TB, (4)

where A is the L2-norm of F , and m is the solution of θ.
Here α and β are maxmized by alternating between evalu-
ating m, γ and maximizing α, β with m, γ fixed [4] as the
following:

γ =

D∑
i=1

βσi

α+ βσi
, α← γ

mTm
, β ← M − γ

∥Fm−B∥22
, (5)

where σi’s are singular values of F TF . With the optimal
α∗ and β∗, the logarithm maximum evidence L (α∗, β∗)
is used for evaluating the transferability. Considering
L (α∗, β∗) scales linearly with the number of objects M , it
is normalized as L(α∗,β∗)

M , which is interpreted as the aver-
age logarithm maximum evidence of all given object feature
matrix F and bounding box matrix B. LogME for classifi-
cation sub-task can be computed by replacing B in Eq. (3)
with converted one-hot class label matrix.

Nevertheless, optimizing LogME by Eq. (4) and Eq. (5)
is timely costly, which is comparable with brute-force fine-
tuning. So LogME further improves the computation effi-
ciency as follows. The most expensive steps in Eq. (4) are to
calculate the inverse matrix A−1 and matrix multiplication
A−1F T , which can be avoided by decomposing F TF . The
decomposition is taken by F TF = V diag{σ}V T , where
V is an orthogonal matrix. By taking Λ = diag{(α+βσ)},
A and A−1 turn to A = αI+βF TF = V ΛV T and A−1 =
V Λ−1V T . With associate law, LogME takes a fast compu-
tation by A−1F TB =

(
V
(
Λ−1

(
V T

(
F TB

))))
. To

this end, the computation of m in Eq. (4) is optimized as

m = β
(
V
(
Λ−1

(
V T

(
F TB

))))
. (6)

B. Details of Experiment Setup
In this section, we include more details of our experiment

setup, including the source models and target datasets.
Implementation Details. Our implementation is based on
MMDetection [1] with PyTorch 1.8 [8] and all experiments
are conducted on 8 V100 GPUs. The base feature level
l0 in Pyramid Feature Matching is set as 3. The ground
truth ranking of these detectors are obtained by fine-tuning
all of them on the downstream tasks with well tuned train-
ing hyper-parameters. The overall Det-LogME algorithm is
given in Algorithm 1.
Baseline Methods. We adopt 3 SOTA methods, KNAS
[12], SFDA [11], and LogME [14], as the baseline methods
and make comparisons with our proposed method. KNAS
is a gradient based method different from recent efficient as-
sessment method, we take it as a comparison with our gra-
dient free approach. SFDA is the current SOTA method on



Algorithm 1 Det-LogME
Input: pre-trained detector F , target dataset Dt

Output: estimated transferability score Det-LogME

1: Extract multi-scale object-level features using pre-trained de-
tector F’s backbone followed by an ROIAlign layer and col-
lect bounding box coordinates and class labels:

F ∈RM×D , B∈RM×4, C∈RM

2: Find the match level features for all objects
3: Apply center normalization on B to obtain Bcen

4: Unify Bcen and C as a unified label matrix Y u by

Y u=


(0, 0, 0, 0)︸ ︷︷ ︸

1 st

, . . .,

bceni︷ ︸︸ ︷
(xc, yc, wc, hc)︸ ︷︷ ︸

ci -th

, . . ., (0, 0, 0, 0)︸ ︷︷ ︸
K -th




M

5: Initialize α = 1, β = 1, compute F TF = V diag{σ}V T

6: while α and β not converge do
7: Compute γ =

∑D
i=1

βσi
α+βσi

, Λ = diag{(α+ βσ)}
8: Compute m = β

(
V
(
Λ−1

(
V T

(
F TBcen

))))
9: Expand m∈RD to m∈RD×(4·K) for matching Y u

10: Update α← γ
mTm

, β ← M−γ

∥Fm−Bcen∥22
11: end while
12: Compute U-LogME by

U-LogME =
M

2
log β +

D

2
logα− M

2
log 2π

− β

2
∥Fm−Bcen∥22 −

α

2
mTm− 1

2
log |A|,

where A = αI + βF TF
13: Downsample m to m′ ∈ RD×4 by reserving the real coordi-

nates of Bcen, compute IoU-LogME =
|Fm′∩Bcen|
|Fm′∪Bcen|

14: Compute Det-LogME = U-LogME+µ · IoU-LogME
15: Return Det-LogME

the classification task, so we formulate the multi-class ob-
ject detection as a object-level classification task for adapt-
ing SFDA. LogME is the baseline of our work. Here, we
describe the details for adapting these methods for object
detection task.

KNAS is originally used for Neural Architecture Search
(NAS) under a gradient kernel hypothesis. This hypothe-
sis indicates that assuming G is a set of all the gradients,
there exists a gradient g which infers the downstream train-
ing performance. We adopt it as a gradient based approach
to compare with our gradient free approach. Under this hy-
pothesis, taking MSE loss for bounding box regression as
an example, KNAS aims to minimize

L(w) =
1

2

∥∥∥B̂ −B
∥∥∥2
2
, (7)

where w is the trainable weights, B̂=[b̂1, . . . , b̂M ]T is the
bounding box prediction matrix, B = [b1, . . . , bM ]T is the
ground truth bounding box matrix, and M is the number of
objects. Then gradient descent is applied to optimize the

model weights:

Θ(t+ 1) = Θ(t)− η
∂L(Θ(t))

∂Θ(t)
, (8)

where t represents the t-th iteration and η is the learning
rate. The gradient for an object sample i is

∂L(Θ(t), i)

∂(Θ(t))
=

(
b̂i − bi

) ∂b̂i
∂Θ(t)

. (9)

Then, a Gram matrix H is defined where the entry (i, j) is

Hi,j(t) =

(
∂b̂j(t)

∂Θ(t)

)(
∂b̂i(t)

∂Θ(t)

)T

. (10)

Hi,j(t) is the dot-product between two gradient vectors

gi=
∂b̂i(t)
∂Θ(t) and gj=

∂b̂j(t)
∂Θ(t) . To this end, the gradient kernel

g can be computed as the mean of all elements in the Gram
matrix H:

g =
1

M2

M∑
i=1

M∑
j=1

(
∂b̂j(t)

∂Θ(t)

)(
∂b̂i(t)

∂Θ(t)

)T

. (11)

As the length of the whole gradient vector is too long, Eq.
(11) is approximated by

g =
1

QM2

Q∑
q=1

M∑
i=1

M∑
j=1

(
∂b̂j(t)

∂Θ̂
q
(t)

)(
∂b̂i(t)

∂Θ̂
q
(t)

)T

. (12)

where Q is the number of layers in the detection head, and
Θ̂

q
is the sampled parameters from q-th layer and the length

of Θ̂
q

is set as 1000 in our implementation. The obtained
gradient kernel g is regarded as the transferability score
from KNAS.

SFDA is specially designed to assess the transferability
for classification tasks, which is not applicable for single-
class detection datasets used in this work including SKU-
110K [3], WIDER FACE [13], and CrowdHuman [10]. It
aims to leverage the neglected fine-tuning dynamics for
transferability evaluation, which degrades the efficiency.
Given object-level feature matrix F =[f1, . . . ,fM ]T , with
corresponding class label matrix C, we consider object de-
tection as an object-level multi-class classification task for
adapting SFDA.

To utilize the fine-tuning dynamics, SFDA transforms
the object feature matrix F to a space with good class
separation under Regularized Fisher Discriminant Analy-
sis (Reg-FDA). A transformation is defined to project F ∈
RM×D to F̃ ∈RM×D′

by a projection matrix U∈RD×D′

with F̃ := UTF . The project matrix is

U = argmax
U

db(U)

dw(U)

def
=

∣∣U⊤SbU
∣∣∣∣U⊤ [(1− λ)Sw + λI]U

∣∣ , (13)



Table 1. Ranking results of of six methods for 1% 33-choose-22 possible source model sets (over 1.9M) on 6 downstream target datasets.
Higher ρw and Recall@1 indicate better ranking and transferability metric. As SFDA is specifically designed for classification task, it is
not applicable for the single-class task of CrowdHuman. The results of all three variants of our approach, U-LogME, IoU-LogME, and
Det-LogME are reported. The best methods are in red and good ones are in blue.

Measure Weighted Pearson’s Coefficient (ρw) Recall@1
Method KNAS SFDA LogME U-LogME IoU-LogME Det-LogME KNAS SFDA LogME U-LogME IoU-LogME Det-LogME

Pascal VOC 0.01±0.15 0.71±0.14 -0.04±0.16 -0.07±0.23 0.73±0.13 0.68±0.12 0.26±0.44 0.33±0.47 0.53±0.50 0.20±0.40 0.34±0.47 0.41±0.49
CityScapes 0.15±0.18 0.46±0.11 0.38±0.09 0.19±0.13 0.53±0.10 0.55±0.09 0.53±0.50 0.00±0.00 0.53±0.50 0.12±0.33 0.53±0.50 0.53±0.50
SODA -0.11±0.21 0.60±0.13 0.28±0.13 0.12±0.13 0.65±0.12 0.66±0.11 0.00±0.00 0.00±0.00 0.53±0.50 0.12±0.33 0.53±0.50 0.53±0.50
CrowdHuman -0.21±0.13 N/A 0.08±0.19 0.11±0.17 0.31±0.08 0.30±0.08 0.00±0.00 N/A 0.65±0.48 0.58±0.49 0.65±0.48 0.65±0.48
VisDrone 0.15±0.21 0.29±0.15 0.35±0.10 0.12±0.10 0.44±0.12 0.44±0.11 0.12±0.32 0.34±0.47 0.17±0.38 0.01±0.11 0.25±0.43 0.25±0.43
DeepLesion 0.08±0.18 -0.37±0.29 0.34±0.20 0.54±0.19 -0.17±0.34 0.50±0.16 0.01±0.09 0.00±0.00 0.26±0.44 0.57±0.50 0.00±0.03 0.42±0.49

Average 0.01±0.18 0.34±0.16 0.23±0.15 0.20±0.16 0.42±0.15 0.52±0.11 0.15±0.36 0.11±0.31 0.44±0.50 0.27±0.44 0.38±0.49 0.46±0.50

Table 2. The transferability scores obtained from 6 metrics and fine-tuning mAP on Pascal VOC and CityScapes datasets. The last row is
the corresponding ranking correlation τw for every metric.

Model Backbone
Pascal VOC CityScapes

KNAS SFDA LogME U-LogME IoU-LogME Det-LogME mAP KNAS SFDA LogME U-LogME IoU-LogME Det-LogME mAP

Faster RCNN

R50 2.326E-01 0.791 -6.193 -3.223 0.482 1.199 84.5 -2.093E+00 0.879 -6.257 -1.518 0.624 9.229 41.9
R101 1.095E-01 0.809 -6.177 -3.160 0.492 1.258 84.5 -1.791E+00 0.887 -6.258 -1.478 0.624 9.289 42.3
X101-32x4d -4.396E-02 0.822 -6.146 -2.969 0.505 1.380 85.2 -2.386E+00 0.892 -6.269 -1.397 0.622 9.242 43.5
X101-64x4d 9.018E-01 0.825 -6.129 -2.944 0.509 1.405 85.6 -1.664E+00 0.894 -6.270 -1.381 0.624 9.353 42.8

Cascade RCNN

R50 -6.438E-01 0.795 -6.232 -3.203 0.481 1.206 84.1 -6.218E+00 0.874 -6.286 -1.514 0.618 9.013 44.1
R101 -2.226E-01 0.811 -6.222 -3.176 0.490 1.247 84.9 -6.553E+00 0.883 -6.289 -1.489 0.621 9.127 43.7
X101-32x4d -6.405E-01 0.826 -6.194 -3.024 0.503 1.351 85.6 -5.763E+00 0.891 -6.297 -1.415 0.620 9.160 44.1
X101-64x4d 1.270E+00 0.831 -6.190 -3.006 0.505 1.367 85.8 -5.182E+00 0.891 -6.290 -1.402 0.620 9.166 45.4

Dynamic RCNN R50 -8.148E-03 0.791 -6.206 -2.875 0.483 1.343 84.0 1.878E-01 0.869 -6.303 -1.352 0.617 9.110 42.5

RegNet

400MF 5.056E-01 0.750 -6.162 -3.387 0.465 1.076 83.3 2.401E-01 0.845 -6.264 -1.647 0.606 8.400 39.9
800MF 6.691E-02 0.758 -6.156 -3.295 0.468 1.122 83.9 -2.308E+00 0.855 -6.279 -1.606 0.606 8.441 40.3
1.6GF 1.523E-01 0.770 -6.162 -3.232 0.472 1.161 84.6 -1.504E+00 0.869 -6.279 -1.553 0.613 8.767 41.8
3.2GF 6.241E-02 0.786 -6.170 -3.186 0.482 1.215 85.5 -3.148E-01 0.877 -6.269 -1.527 0.618 8.984 42.7
4GF 3.995E-01 0.790 -6.166 -3.133 0.484 1.242 85.0 -1.451E+00 0.878 -6.278 -1.506 0.617 8.956 43.1

DCN
R50 3.852E-02 0.825 -6.122 -2.748 0.511 1.490 86.1 -6.647E-01 0.889 -6.246 -1.267 0.625 9.497 42.6
R101 -9.254E-02 0.836 -6.155 -2.812 0.516 1.481 86.5 -2.072E+00 0.894 -6.253 -1.298 0.626 9.503 43.1
X101-32x4d 7.048E-02 0.846 -6.100 -2.653 0.525 1.577 86.9 -7.308E-01 0.899 -6.253 -1.227 0.626 9.571 43.5

FCOS
R50 1.023E+01 0.289 -6.093 -1.856 0.264 0.988 77.3 6.343E+00 0.492 -6.434 -0.992 0.491 4.318 40.4
R101 5.233E+00 0.280 -6.032 -2.101 0.262 0.884 79.4 5.277E+00 0.515 -6.426 -1.124 0.491 4.219 41.2

RetinaNet

R18 -3.404E-01 0.733 -6.289 -2.928 0.442 1.177 80.9 1.157E-02 0.844 -6.411 -1.438 0.597 8.206 36.7
R50 -1.357E-01 0.759 -6.277 -2.975 0.457 1.213 84.1 5.439E-03 0.867 -6.370 -1.388 0.606 8.609 40.0
R101 -1.807E-01 0.774 -6.259 -2.972 0.467 1.246 84.4 4.709E-02 0.879 -6.357 -1.374 0.612 8.854 40.6
X101-32x4d -1.030E-01 0.792 -6.260 -2.763 0.475 1.360 84.6 2.935E-02 0.881 -6.377 -1.308 0.608 8.762 41.2
X101-64x4d -3.170E-01 0.792 -6.229 -2.722 0.475 1.376 85.3 2.304E-02 0.886 -6.366 -1.276 0.610 8.858 42.0

Sparse RCNN
R50 9.846E+03 0.777 -6.267 -3.243 0.456 1.102 84.7 -1.640E+04 0.878 -6.414 -1.595 0.602 8.304 38.9
R101 -2.104E+04 0.795 -6.238 -3.263 0.466 1.127 85.0 1.198E+04 0.884 -6.396 -1.601 0.602 8.304 39.3

Deformable DETR R50 8.873E+03 0.794 -5.221 -2.295 0.462 1.501 87.0 1.363E+05 0.881 -5.376 -1.065 0.673 11.602 45.5

Faster RCNN OI R50 2.038E+00 0.724 -6.016 -4.100 0.443 0.716 82.2 3.288E+00 0.837 -6.260 -1.951 0.602 7.982 39.3
RetinaNet OI R50 -2.045E-01 0.697 -6.195 -3.335 0.430 0.974 82.0 1.701E-01 0.845 -6.343 -1.624 0.600 8.177 39.5

SoCo R50 -3.222E+00 0.703 -6.094 -3.062 0.433 1.093 56.5 4.629E+01 0.836 -6.237 -1.473 0.606 8.536 41.7
InsLoc R50 -3.153E-03 0.566 -6.239 -1.592 0.424 1.649 86.7 1.041E-02 0.756 -6.322 -0.738 0.582 8.191 40.3

UP-DETR R50 8.225E+02 0.175 -6.267 -3.086 0.238 0.404 59.3 -2.994E+02 0.399 -6.485 -1.404 0.403 0.455 30.9
DETReg R50 -6.832E+02 0.189 -5.999 -3.872 0.248 0.129 63.5 -9.335E+02 0.427 -5.892 -1.958 0.440 1.462 38.7

τw 0.15 0.64 0.22 0.43 0.54 0.79 N/A -0.02 0.51 0.32 0.18 0.68 0.71 N/A

where db(U) and dw(U) represent between scatter of
classes and within scatter of each class, λ∈[0, 1] is a regu-
larization coefficient for a trade-off between the inter-class
separation and intra-class compactness, and I is an identity
matrix. The between and within scatter matrix Sb and Sw

are difined as

Sb =

K∑
c=1

Mc (νc − ν) (νc − ν)⊤

Sw =

K∑
c=1

Mc∑
i=1

(
f

(c)
i − νc

)(
f

(c)
i − νc

)⊤
,

(14)

where ν =
∑M

i=1 f i and νc =
∑M

i=1 f
(c)
i are the mean of

all and c-th class object features.

With the intuition that a model with Infomin requires
stronger supervision for minimizing within scatter of every
class which results in better classes separation. λ is instan-
tiated by λ = exp−aσ(Sw), where a is a positive constant
and σ(Sw) is the largest eigenvalue of Sw. For every class,

SFDA assumes f̃
(c)

i ∼ N
(
U⊤νc,Σc

)
, where Σc is the

covariance matrix of {f̃
(c)

i }Mc
i=1. With projection matrix U ,

the score function for class c is

δc (f i) = f⊤
i UU⊤νc −

1

2
ν⊤
c UU⊤νc + log

Mc

M
. (15)

Then, the final class prediction probability is obtained by



Table 3. The transferability scores obtained from 6 metrics and fine-tuning mAP on SODA and CrowdHuman datasets. The last row is the
corresponding ranking correlation τw for every metric.

Model Backbone
SODA CrowdHuman

KNAS SFDA LogME U-LogME IoU-LogME Det-LogME mAP KNAS SFDA LogME U-LogME IoU-LogME Det-LogME mAP

Faster RCNN

R50 -1.314E+00 0.831 -5.698 -2.148 0.542 16.546 34.7 -1.216E+01 N/A -6.660 -0.116 0.575 1.357 41.4
R101 -2.636E+00 0.846 -5.679 -2.071 0.548 17.121 35.0 -1.648E+01 N/A -6.655 -0.111 0.577 1.482 41.3
X101-32x4d -2.516E+00 0.852 -5.664 -1.924 0.554 17.643 35.7 -7.494E+00 N/A -6.620 -0.074 0.586 2.081 41.2
X101-64x4d -1.226E+00 0.856 -5.660 -1.914 0.557 17.900 36.4 -9.416E+00 N/A -6.596 -0.045 0.592 2.460 41.5

Cascade RCNN

R50 -9.109E+00 0.826 -5.746 -2.129 0.537 16.183 35.3 -1.958E+01 N/A -6.681 -0.138 0.568 0.851 43.0
R101 -1.177E+01 0.836 -5.733 -2.091 0.543 16.685 35.9 -2.723E+01 N/A -6.683 -0.143 0.567 0.781 42.8
X101-32x4d -1.509E+01 0.846 -5.709 -1.966 0.549 17.245 36.8 -1.755E+01 N/A -6.662 -0.126 0.573 1.170 43.2
X101-64x4d -1.277E+01 0.851 -5.733 -1.946 0.552 17.453 37.4 -1.083E+01 N/A -6.660 -0.121 0.573 1.225 43.7

Dynamic RCNN R50 -1.597E+00 0.820 -5.758 -1.871 0.535 16.169 35.2 -5.448E+00 N/A -6.674 -0.130 0.568 0.900 41.8

RegNet

400MF -1.900E+00 0.785 -5.670 -2.300 0.520 14.767 32.5 -1.393E+01 N/A -6.628 -0.099 0.579 1.619 38.0
800MF -1.512E+00 0.803 -5.694 -2.239 0.525 15.206 34.2 -8.908E+00 N/A -6.636 -0.099 0.578 1.546 39.8
1.6GF -2.576E+00 0.815 -5.668 -2.169 0.537 16.190 35.7 -1.558E+01 N/A -6.653 -0.118 0.573 1.215 41.8
3.2GF -2.007E+00 0.827 -5.682 -2.140 0.538 16.288 37.0 -1.560E+01 N/A -6.647 -0.106 0.577 1.438 41.7
4GF -1.735E+00 0.826 -5.700 -2.097 0.539 16.380 37.0 -1.600E+01 N/A -6.650 -0.111 0.576 1.388 41.9

DCN
R50 -1.077E+00 0.844 -5.677 -1.736 0.553 17.632 35.3 -1.562E+01 N/A -6.569 -0.013 0.602 3.121 43.1
R101 -8.408E-01 0.846 -5.669 -1.786 0.556 17.874 35.3 -1.073E+01 N/A -6.584 -0.033 0.596 2.718 43.4
X101-32x4d -1.797E+00 0.859 -5.676 -1.655 0.559 18.189 36.0 -7.181E+00 N/A -6.494 0.018 0.614 3.876 44.3

FCOS
R50 -1.287E-02 0.510 -5.729 -1.328 0.415 6.902 33.3 -1.263E+00 N/A -6.578 -0.040 0.570 1.046 35.6
R101 6.980E-01 0.541 -5.688 -1.535 0.413 6.610 34.5 -1.601E+00 N/A -6.537 -0.006 0.578 1.593 36.8

RetinaNet

R18 -2.071E-02 0.778 -5.846 -1.988 0.510 14.099 29.6 3.133E-02 N/A -6.696 -0.161 0.554 0.008 35.8
R50 -7.809E-01 0.818 -5.817 -1.885 0.527 15.528 33.9 3.080E-02 N/A -6.702 -0.168 0.555 0.035 38.3
R101 -1.857E-02 0.828 -5.835 -1.874 0.532 15.877 34.0 -1.330E-03 N/A -6.699 -0.164 0.556 0.121 38.6
X101-32x4d -1.033E-01 0.833 -5.864 -1.794 0.530 15.766 34.2 -4.154E-03 N/A -6.691 -0.157 0.557 0.171 38.9
X101-64x4d -2.995E-01 0.839 -5.851 -1.717 0.537 16.430 35.6 8.897E-03 N/A -6.676 -0.147 0.562 0.477 39.9

Sparse RCNN
R50 -5.855E+04 0.824 -5.892 -2.256 0.518 14.636 35.9 4.174E+04 N/A -6.683 -0.154 0.554 0.009 38.6
R101 -1.934E+05 0.833 -5.869 -2.255 0.523 14.991 36.3 -1.077E+03 N/A -6.676 -0.145 0.557 0.190 39.2

Deformable DETR R50 -9.691E+04 0.820 -4.557 -1.421 0.589 20.697 38.8 -3.523E+04 N/A -5.447 0.904 0.790 15.536 45.3

Faster RCNN OI R50 -2.170E+01 0.767 -5.543 -2.756 0.513 13.942 32.8 -6.768E+01 N/A -6.533 -0.006 0.601 3.037 40.0
RetinaNet OI R50 -2.793E-01 0.780 -5.782 -2.278 0.507 13.741 33.4 7.107E-03 N/A -6.650 -0.104 0.571 1.077 38.5

SoCo R50 -5.681E-01 0.759 -5.584 -2.074 0.517 14.607 33.2 -1.681E+01 N/A -6.553 0.019 0.601 3.065 40.6
InsLoc R50 1.857E-02 0.691 -5.750 -0.842 0.490 13.092 31.4 7.323E-01 N/A -6.652 -0.117 0.565 0.690 40.7

UP-DETR R50 -4.658E+02 0.457 -6.040 -1.946 0.338 0.423 20.1 3.661E+02 N/A -6.613 -0.145 0.555 0.062 35.4
DETReg R50 -8.563E+02 0.467 -5.584 -2.477 0.371 2.783 24.3 -6.686E+02 N/A -6.202 0.221 0.638 5.498 41.0

τw -0.44 0.43 0.22 0.03 0.66 0.65 N/A -0.47 N/A 0.37 0.39 0.51 0.51 N/A

normalizing {δc (f i)}K with softmax function:

p (ci |f i) =
expδci (fi)∑K
c=1 exp

δc(fi)
(16)

To this end, the transferability score is expressed as the
mean of p (ci |f i) over all object samples by

p (C |F ) =
1

M

M∑
i=1

expδci (fi)∑K
c=1 exp

δc(fi)
. (17)

LogME is following Eq. (3) described in Sec. A.

C. More Experimental Results
Ranking Performance. Except for Weighted Kendall’s tau
(τw) and Top-1 Relative Accuracy (Rel@1), we also evalu-
ate the transferability metrics based on Weighted Pearson’s
coefficient (ρw) [2] and Recall@1 [7], as shown in Table
1. Weighted Pearson’s coefficient is used to measure the
linear correlation between transferability scores and ground
truth fine-tuning performance. Recall@1 is used to measure
the ratio of successfully selecting the model with best fine-
tuning performance. The evaluation is conducted on 1% 33-
choose-22 possible source model sets (over 1.9M). Regard-
ing ρw, we can draw the conclusion that Det-LogME out-
performs all three SOTA methods consistently on 6 down-
stream tasks by a large margin. The IoU based metric

IoU-LogME also performs well on 5 datasets. Regarding
Recall@1, our proposed Det-LogME outperforms previous
SOTA methods in average.
Detailed Ranking Results. We provide detailed raw rank-
ing results of all 33 pre-trained detectors on 6 downstream
tasks, including the transferability scores, ground truth per-
formance (the average result of 3 runs with very light vari-
ance), and Weighted Kendall’s tau τw. The results are pro-
vided in the following tables. Table 2 shows results on Pas-
cal VOC and CityScapes, Table 3 shows results on SODA
and CrowdHuman, and Table 4 contains results on Vis-
Drone and DeepLesion.
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