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Overview
In this supplementary material, we provide the following

items:

1. (Sec. 1) More detailed information about the adopted
three benchmark datasets (i.e. BraTS 2019, ISIC 2018
and ACDC 2017).

2. (Sec. 2) Implementation details on the utilized three
benchmark datasets (i.e. BraTS 2019, ISIC 2018 and
ACDC 2017).

3. (Sec. 3) More quantitative results about ablation stud-
ies of decoder structure and pre-training loss, as well
as more experimental comparison on 3D baselines.

4. (Sec. 4) Visual comparison of reconstruction results
and brain tumor segmentation results on BraTS 2019
dataset [1, 2, 6], and skin lesion segmentation on ISIC
2018 dataset [4, 9] for qualitative analysis.

Our code will be publicly available.

1. More Details about the Benchmark Datasets
Our proposed method is evaluated on three benchmark

datasets for medical segmentation. The Brain Tumor Seg-
mentation 2019 challenge (BraTS 2019) dataset [1, 2, 6]
is composed of multi-institutional pre-operative MRI se-
quences, including 335 patient cases for training and 125
cases for validation. Each sample contains four modalities
(FLAIR, T1, T1c, T2) with the size of 240 × 240 × 155,
and the corresponding ground truth consists of 4 classes:
background (label 0), necrotic and non-enhancing tumor
(label 1), peritumoral edema (label 2) and GD-enhancing
tumor (label 4). The Dice score and the Hausdorff distance

*Equal Contribution.†Corresponding author.

(95%) metrics are used for evaluating the segmentation ac-
curacy of different regions, including enhancing tumor re-
gion (ET, label 4), regions of the tumor core (TC, labels 1
and 4), and the whole tumor region (WT, labels 1,2 and 4).
The International Skin Imaging Collaboration 2018 (ISIC
2018) dataset [4, 9] is a collection of 2594 RGB images
of skin lesion for training, around 100 samples for valida-
tion, and 1000 samples for testing. Five metrics are specif-
ically employed for the quantitative assessment of model
performance, including Dice, Jaccard Index (JI), Accuracy,
Recall, and Precision. The Automated Cardiac Diagno-
sis Challenge 2017 (ACDC 2017) dataset [3] is collected
from different patient cases using MRI scanners, including
3D cardiac MRI cine for both end-diastolic (ED) and end-
systolic (ES) phases instances. The publicly available train-
ing dataset consists of 100 patient scans, which are split into
80 training samples and 20 testing samples. The ground
truth contains 3 classes: right ventricle (RV), myocardium
(Myo) and left ventricle (LV).

2. Implementation Details

Config Pre-training Fine-tuning
optimizer Adam Adam

base learning rate 10−4 10−4

weight decay 10−5 10−5

batch size 64 64
lr decay schedule cosine decay cosine decay
training epochs 250 500

Table 1. Training settings on BraTS 2019 dataset.

The proposed method is implemented in PyTorch [7]
and trained with two NVIDIA Geforce RTX 3090 GPUs.
The specific training hyper-parameter configurations of our
FreMIM on BraTS 2019, ISIC 2018 and ACDC 2017 can
be found in Table 1, 2, 3 respectively.
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Config Pre-training Fine-tuning
optimizer SGD SGD

base learning rate 10−3 5× 10−4

weight decay 10−8 10−8

batch size 12 12
lr decay schedule poly poly
training epochs 125 300

Table 2. Training settings on ISIC 2018 dataset.

Config Pre-training Fine-tuning
optimizer SGD SGD

base learning rate 10−2 10−2

weight decay 10−4 10−4

batch size 16 16
lr decay schedule poly poly
training epochs 300 1200

Table 3. Training settings on ACDC 2017 dataset.

3. More Quantitative Results.

Importance of the bilateral aggregation decoder (BAD)
and focal loss: We also conduct supplementary ablation
studies to validate the effectiveness of BAD and focal loss,
in Table 4, which clearly justifies the importance and effec-
tiveness of our design choices.

Decoder Loss Dice Score (%) ↑
ET WT TC Average

Single Focal 77.88 90.31 82.01 83.40
BAD L1 78.75 90.83 82.19 83.92(+0.48)
BAD MSE 79.18 90.47 82.79 84.15(+0.71)
BAD Focal 79.65 90.80 83.33 84.59(+1.15)

Table 4. Ablation study on the type of decoder and loss function
for self-supervised pre-training.

Evaluations on 3D baselines: Noticeably, our framework
is easily extendable to 3D version, enhancing 3D base-
line’s performance. To convince this point, we also conduct
experiments on a commonly used 3D benchmark dataset
BTCV [5], with 3D UNet and 3D Swin UNETR [8] as 3D
baselines for comparison. The employed pre-training meth-
ods (i.e. Model genesis [10] and Swin UNETR [8]) are both
previous efforts on SSL for medical image analysis. We
follow the same pre-training and fine-tuning settings as in
Swin UNETR for a fair comparison. Besides, we evalu-
ate the effectiveness of our approach in terms of five-fold
cross-validation on the training set and the evaluation met-
rics stay the same as in Swin UNETR. Results in Table 5
provide substantial evidence of our method’s generalization
ability and potential.

Method Scratch Models genesis [10] Swin UNETR [8] Ours

3D UNet 80.41 81.25 - 81.72
Improvement↑ - (+0.84) - (+1.31)

Swin UNETR 3D 81.06 - 82.25 82.80
Improvement↑ - - (+1.19) (+1.74)

Table 5. Comparison with previous SSL works on BTCV dataset.

4. Visual Comparison for Qualitative Analysis
Segmentation Results. Firstly, the skin lesion segmenta-
tion results on ISIC 2018 dataset is presented in Fig. 1. It
can be obviously seen that the model can generate much
more accurate and fine-grained segmentation masks com-
pared with baseline with the benefit of employing our pro-
posed FreMIM. Simultaneously, we compare the segmenta-
tion performance of different self-supervised methods, in-
cluding MAE, DINO, and FreMIM on the BraTS 2019
dataset with visualization results. As shown in Fig. 2, our
method promotes the detailed pixel delineation of brain tu-
mors and obtains more accurate predictions.
Reconstruction Results. To convincingly prove the supe-
riority of our FreMIM, we further supplement more visual
comparison of reconstruction results on BraTS 2019 dataset
for qualitative analysis. As is shown in Fig. 3, our method
can nicely achieve the reconstruction task of Fourier spec-
trum and generate the corresponding reconstruction spec-
trum approximately the same as original image. To be men-
tioned, for each image slice, the first row is the original im-
age and the second row is our reconstruction results of the
Fourier spectrum.



Image Ground Truth Baseline Ours

Figure 1. The visual comparison of skin lesion segmentation results on ISIC 2018 dataset with TransBTSV2 as the baseline.

Baseline DINO MAE Ours GT

Figure 2. The visual comparison of MRI brain tumor segmentation results with UNETR as baseline. The blue regions denote the enhancing
tumors, the red regions denote the non-enhancing tumors and the green ones denote the peritumoral edema.
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Figure 3. The visualization of reconstruction results by our FreMIM in the frequency domain.
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