
Maximum Knowledge Orthogonality Reconstruction
with Gradients in Federated Learning

Supplementary Material

Feng Wang, Senem Velipasalar, and M. Cenk Gursoy
EECS department, Syracuse University, Syracuse, NY, 13244.

{fwang26, svelipas, mcgursoy}@syr.edu

1. Additional Proof
In this section, we provide detailed explanations, inter-

pretations, and proof of the mathematical content for com-
prehensive insight. We list all the notations used in the pa-
per in Table 1.

We derive Eqn. (2) included in our main paper as shown
below, where O(1

K) denotes order K−1 complexity.

H(g1)−H

(
g1|

K∑
k=1

gk

)

= H

(
K∑

k=1

gk

)
−H

(
K∑

k=1

gk|g1

)

= H

(
K∑

k=1

gk

)
−H

(
K∑

k=2

gk

)

=
1

2
log(2πKσ2

g) +
1

2
− 1

2
log(2π(K − 1)σ2

g)−
1

2

=
1

2
log

(
1 +

1

K − 1

)
=

1

2(K − 1)
+

1

2

(
1

2(K − 1)

)2

+ . . .

= O

(
1

K

)
.

We first rewrite Eqn. (4) from the main paper as below:

∂L(xk, yk |A)

∂W1
=

∂L(xk, yk |A)

∂yk

∂yk
∂W1

=
∂L(xk, yk |A)

∂b1
z1k

T
.

We note that the first equality is derived from the chain rule.
To prove the second equality, we first clarify that an FC clas-
sifier with only one layer has no activation function, there-
fore yk = W1z1k + b1. Hence, ∂L(xk,yk | A)

∂yk
= ∂L(xk,yk | A)

∂b1 .

Additionally, the partial derivative ∂yk
∂W1 is simply the trans-

pose of the multiplier z1k
T. For the multiple layer case as

we claimed in Eqn. (9), we may consider a dummy vector
z′k before activation f , i.e. z2k = f(z′k) = f(W1z1k + b1).

Table 1. Notation
FL Parameters: Section 2, 3.1
U , u Total number and index of clients
K, k Batch size and local sample index
xk, yk The kth input image and label
A Network parameters (weights and biases)
L(x, y |A) Loss function
Gk Gradient of the kth image
N Total number of labels
n Index of node in the corresponding layer
MKOR - FC: Section 3.2
p = {p1, . . . , pN} Local sample distribution over classes
L, l Total number of layers and layer index
N l Total number of input nodes
Wl, bl Weight and bias at FC layer l
zlk Input from sample k at FC layer l
yk Classifier output from sample k

ẑ1n Reconstructed input of label n
MKOR - conv: Section 3.4
z0 Output of convolutional layers before flatten
I , i Total number and index of 4-direction layers
J , j Total number and index of max-pooling layer

with only “copy” layer
h, w, c Height, width and channel index
R[h,w, c] Considered region in x for z0[h,w, c]
x̂n Reconstructed input image of label n

Thus, we can substitute z′k for yk in the analysis above, and
get the same result as shown in Eqn. (9).

For the special case of an FC classifier without bias term,
we have to set every connected weight in Fig. 1 of the
main paper to the same positive value. Thus, for each in-
put sample, all elements of the vector ∂L(xk,yk | A)

∂yk
will have

the same value. Therefore, although we do not have this
vector indicating the magnitude of the reconstructed image,
we still have a rough estimation that is uniformly brighter or
darker than the original input with the same ratio between
pixels, and it is usually sufficient to identify all key fea-
tures. Nevertheless, for the majority of benchmark models,
we usually have the bias term.

1

The intuition behind Equations (10), (11), (12) and (13)
is to decouple one node for each of the N labels in the first
2N nodes in the output of the first FC layer z2. Such de-
coupling is similar to the naive case shown in Fig. 1, except
that each output node is coupled to two different nodes in
the output in the second layer. As shown in Eqn. (10),
for each pair of neighboring nodes of z2, the weight in the
first layer to one node is the opposite of the weight to the
other node. Therefore in the forward-propagation, one node
with negative output will be zeroed out by ReLU activation
while another with positive output will be kept. If we alter-
natively consider activation that does not zero out negative
values such as Sigmoid, we can use only one line of nodes
for each label. In the case where activation zeroes out nega-
tive values such as ReLU, we note in Eqn. (11) that the bias
in the first layer to each decoupled node should be mod-
ified accordingly, to avoid zeroing out necessary forward-
propagation paths.

Eqn. (12) specifies the weights in the second FC layer
and the following FC layers to ensure that the target N
nodes in the first 2N nodes of z2 are decoupled. In the
second FC layer, we merge every two neighboring nodes in
the first 2N nodes of the input z2 to a single node in the first
N nodes of the output z3. According to the pair of oppo-
site weights in the first layer, for each pair of nodes in the
first 2N nodes of z2, there will be one node with positive
value and the other with zero value after ReLU activation.
Therefore, we set the weight of the merging path to posi-
tive values and the rest to minor Gaussian noise, so that the
back-propagation path will go back to one of the decoupled
pair of nodes with positive output. For the majority of FC
layers, N ≪ N l and such modification can be hardly de-
tected. For the following layers (i.e., 3rd, 4th, etc), we keep
a single positive weight for each decoupled node until the
output. Eqn. (13) specifies that the bias to the decoupled
nodes is non-negative in order to prevent the output being
zeroed out by ReLU activation.

To explain the convolutional block reconstruction, we
first illustrate how the forward-propagation in Fig. 2 works.
We denote the input nodes as x, and the output nodes of
each convolutional layers as x1, x2, etc. For a typical RGB
image, we have three input channels in x. After the forward-
propagation, the first layer of type 1⃝ divides the informa-
tion of each input channel to a positive copy and a nega-
tive copy. That is to say, channel 1 in x is exactly copied
to channel 1 in x1 which is called a “copy” filter, and a
negative copy 1 − x is copied to channel 2 in x1 which
is called a “min” filter. The benefit of such division is to
keep both maximum values and minimum values after the
max-pooling layer. Similarly, channel 2 in x is divided into
channels 3 and 4 in x1, and channel 3 in x is divided into
channels 5 and 6 in x1. Therefore, all the information in x
is kept in the first 6 channels in x1, and we do not care about

the rest of the channels in x1. The second layer of type 2⃝
copies the 6 channels to the first 6 channels in x2. The third
layer of type 3⃝ also copies the 6 channels to x3, but it also
has a 2 × 2 max-pooling. As a result, each node in chan-
nel 1 of x3 denotes the maximum value of a 2 × 2 area in
channel 1 of x, and each node in channel 2 of x3 denotes the
minimum value of a 2× 2 area in channel 1 of x. Similarly,
channels 3 to 6 of x3 represents the maximum and mini-
mum values of channels 2 and 3 of x. While we lost a half
of the width and a half of the height in x3 and the amount of
information is reduced to 1

4 in each channel, we also have
many more channels to utilize. To store the input informa-
tion in more different channels, we in the fourth layer of
type 4⃝ divide each channel in x3 into 4 different channels
in x4 in 4 different directions. Specifically, the output chan-
nel with “copy” filter focuses on the same area of input x3,
and the output channel with “right” filter, “lower” filter or
“lower right” filter focuses on a switched area of the input
x3. Thus, these 4 channels represent 4 different areas in the
input. These areas are similar, but slightly switched. The
fifth layer and the sixth layer have the same function as the
third layer and the fourth layer, and the considered region is
further switched. Finally, the last layer max-pools and flat-
tens the output. Given the two switches with layer type 4⃝,
each output node that corresponds to the considered chan-
nels maps to a different considered region in the input x,
and our input reconstruction relies on these switches.

With the aforementioned idea of Fig. 2 in mind, we then
explain the rest of the equations. In Eqn. (14), we con-
sider the 6 output channels that are not shifted, i.e., all cor-
responding filters are “copy” filters. Each element in these
6 output channels corresponds to a certain “considered re-
gion” in the input, which is defined in Eqn. (14). For the
rest of the output channels with at least one switch, i.e., cor-
responding to at least one of the “right” filter, “lower” filter
or “lower right” filter, we define the shifted distance at the
input image x in Eqn. (15). Given the shifted distance,
we express the shifted considered region for arbitrary out-
put channel in Eqn. (16), which is a generalized version of
Eqn. (14). On the one hand, a half of the channels expe-
rienced a “copy” filter at the first layer thus describing the
maximum value of the considered region, while the others
experienced a “min” filter at the first layer thus describing
the minimum value of the considered region. On the other
hand, since each output node describes a considered region
in the input, each node of the input is also described by
multiple output nodes. Therefore, in Eqn. (17), the upper
bound of an input node is defined as the minimum of the
maximum describers. In Eqn. (18), the lower bound of an
input node is defined as the maximum of the minimum de-
scribers. Without further information, we estimate the input
node by the average between the upper bound and the lower
bound as in Eqn. (19). For the inconspicuous approach,

the indices of the channels should be randomly shuffled. In
Eqn. (20), we can multiply the weight and bias of the fil-
ters in each layer by a different positive factor β, and simply
divide by different βs during reconstruction.

2. Additional Examples
In this section, we provide comparison between experi-

mental settings and additional examples with larger images.
In our inconspicuous reconstruction approaches, we pro-

posed multiple strategies such as reshuffling of indices and
magnitude manipulation to reduce the detectability by the
clients. Furthermore, even if we only focus on the ratio
of the modified parameters, MKOR is still much more in-
conspicuous than the existing approaches. In MKOR for
VGG16, the layer with highest ratio of modification is the
last conv layer. It has 2359808 parameters, and 332160
parameters are modified, so the peak modification ratio is
14%. Furthermore, the overall modification ratio for all lay-
ers in VGG16 is less than 1%, and every image generates
gradient of similar magnitude. In contrast, class fishing [2]
sets 99.9% of parameters in the last layer to zero, and in-
put images from 99.9% of the labels do not generate any
gradient at all (i.e., all of them have zero gradient). Other
works assuming a malicious server either insert FC layer
with tremendous number of input nodes (about 108), or even
modify the federated learning architecture. Both cases are
much more easily detectable than MKOR, and please refer
to Section 2 in the paper for details. Also, different from
some malicious server attacks, the performance of MKOR
does not depend on any unmodified parameter, so there is no
dependency on the accuracy or convergence of the network.

In Fig. 1 and Fig. 2, we consider reconstructing a batch
with 100 MNIST images via original LeNet and modi-
fied LeNet, respectively, with MKOR, and compare with
deep leakage from gradient (DLG) [4], improved DLG
(iDLG) [3], gradient inversion (GI), and class fishing [2].

To show the robustness and effectiveness of our MKOR
attack, we test MKOR along with other attack methods
against two state-of-the-art defensive strategies. In Fig. 3
and Fig. 4, we show the comparison with original LeNet5
under Gaussian noise with normalized standard deviation
10−2 and Soteria defense with 30% prune rate, respectively.
The average numerical results are shown in Table 2 and Ta-
ble 3. The gradient clipping only changes the average of our
reconstruction and does not affect the MKOR reconstruc-
tion result, while the additive artificial noise needs to be so
high that it diminishes the model accuracy if the server is
benign. Furthermore, Soteria and other optimization-based
defensive detection schemes take longer time than gradi-
ent generation itself, thus can demand high edge device
memory, computation and energy resources, and might po-
tentially flag natural examples as well. We believe that a
comprehensive defense approach by measuring the level of

Table 2. Comparison with defensive Gaussian noise on gradients
on MNIST with LeNet5 for random batches with batch size 100.

max, avg SSIM
max, avg PSNR

Original LeNet
Gaussian (10−2)

Modified LeNet
Gaussian (10−1)

DLG 0.10, 0.01, -3.53, -5.58 0.01, 0.00, -6.42, -11.89
iDLG 0.14, 0.04, 0.59, -0.59 0.01, 0.00, -2.60, -14.46
GI 0.29, 0.12, 15.44, 11.23 0.28, 0.07, 9.88, 6.08
CF 0.20, —, 14.42, — 0.33, —, 12.52, —
MKOR (ours) 0.46, 0.25, 16.71, 12.74 0.63, 0.37, 18.25, 13.41

parameter inconspicuousness, such as sparse representation
and low-rank representation, can be developed as more at-
tack methods are proposed.

In Fig. 6, Fig. 7, and Fig. 8, we present three other
unique batches of CIFAR-100 reconstructed by MKOR via
VGG16, where each image is the only one representing its
class, and we compare with the original batches and those
reconstructed by GI, and CF. As can be seen, overall, the
images reconstructed by GI are much more distorted com-
pared to proposed MKOR. Moreover, CF can only recon-
struct one image per batch without necessarily providing
the best reconstruction performance on this one image. Fur-
thermore, as shown in Table 3 of our main paper, the image
in the batch reconstructed by MKOR with the best perfor-
mance has higher SSIM and PSNR values than the only im-
age reconstructed by class fishing.

While these approaches achieve the above results with
unique CIFAR-100 samples, their performance can degrade
when there are multiple images from the same class. CF
is especially vulnerable, since it can only reconstruct one
image per batch. In Fig. 5, performance of MKOR is
shown when samples are randomly selected from at most
N classes, allowing different images from the same class.
The number of unique samples (only ones from their class)
is estimated by Eq. (3) in the paper. The performance de-
grades as N decreases, e.g., when N=1, reconstruction is
the average of K = 100 images belonging to the same class.
We note that the performance variance between batches for
the same N value is due to the difference in data but not the
MKOR algorithm.

In Fig. 9, we present the MKOR reconstruction on a
unique batch with 1000 ImageNet images with original
VGG16 network and modified network, respectively. In
Fig. 10, we present the reconstruction on a random batch

Table 3. Comparison with Soteria defense on MNIST with LeNet5
for random batches with batch size 100.

max, avg SSIM
max, avg PSNR

Original LeNet
Prune rate 30%

Modified LeNet
Prune rate 30%

DLG 0.00, 0.00, -32.15, -35.14 0.01, 0.00, -13.41, -24.15
iDLG 0.00, 0.00, -30.75, -33.49 0.00, 0.00, -18.07, -25.66
GI 0.19, 0.01, 7.89, 2.77 0.09, 0.01, 2.89, -1.81
CF 0.16, —, 11.43, — 0.17, —, 8.73, —
MKOR (ours) 0.34, 0.12, 15.29, 10.66 0.71, 0.38, 18.79, 13.49

with the same setting. We notice that the batch is very
large while the high-resolution image has many details, so
we randomly select 100 images in the batch to show in the
plots.

To show the reconstruction details, we present larger sin-
gle samples in Figs. 11, 12, 13, respectively, for Fig. 3 in
the main paper, Fig. 4 in the main paper, and Fig. 10.

We also provide our code as a zipped supplementary file.
The implementation details of the proposed MKOR can be
found in this zipped file, the implementation details of DLG
and iDLG can be found in [3], and the implementation de-
tails of GI and CF can be found in [1].

References

[1] Yuxin Wen Jonas Geiping, Liam Fowl. breaching. https:
//github.com/JonasGeiping/breaching, 2023. 4

[2] Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum,
and Tom Goldstein. Fishing for user data in large-batch fed-
erated learning via gradient magnification. arXiv preprint
arXiv:2202.00580, 2022. 3

[3] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg:
Improved deep leakage from gradients. arXiv preprint
arXiv:2001.02610, 2020. 3, 4

[4] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from
gradients. Advances in neural information processing systems,
32, 2019. 3

Original Batch

Deep Leakage from Gradient

MKOR (Ours)

Improved Deep Leakage from Gradient

Gradient Inversion Class Fishing

Figure 1. Qualitative comparison between different input reconstruction methods on MNIST with original LeNet5 for a batch size of 100.

Original Batch

Deep Leakage from Gradient

MKOR (Ours)

Improved Deep Leakage from Gradient

Gradient Inversion Class Fishing

Figure 2. Qualitative comparison between different input reconstruction methods on MNIST with modified LeNet for a batch size of 100.

Original Batch

Deep Leakage from Gradient

MKOR (Ours)

Improved Deep Leakage from Gradient

Gradient Inversion Class Fishing

Figure 3. Qualitative comparison between different input reconstruction methods under Gaussian noise on MNIST with original LeNet5
for a batch size of 100.

Original Batch

Deep Leakage from Gradient

MKOR (Ours)

Improved Deep Leakage from Gradient

Gradient Inversion Class Fishing

Figure 4. Qualitative comparison between different input reconstruction methods under Soteria defense on MNIST with original LeNet5
for a batch size of 100.

Figure 5. Reconstruction performance of MKOR on batches with at most N classes. Each data point shows the mean and standard deviation
over U = 10 batches. We also plot 4 out of all K = 100 samples in a batch for the cases of N = 1, N = 50 and N = 100.

Original Batch

Gradient Inversion

MKOR (Ours)

Class Fishing

Figure 6. Qualitative comparison between different input reconstruction methods on CIFAR-100 for an additional batch with a batch size
of 100.

Original Batch

Gradient Inversion

MKOR (Ours)

Class Fishing

Figure 7. Qualitative comparison between different input reconstruction methods on CIFAR-100 for another additional batch with a batch
size of 100.

Original Batch

Gradient Inversion

MKOR (Ours)

Class Fishing

Figure 8. Qualitative comparison between different input reconstruction methods on CIFAR-100 for another additional batch with a batch
size of 100.

Original Batch MKOR on original VGG16 without noise

MKOR on original VGG16 with Gaussian (0.1) MKOR on modified network without noise

MKOR on modified network with Gaussian (0.1)

Figure 9. Input reconstruction on a unique batch with 1000 ImageNet images, with either original VGG16 or modified network, and with
either no noise or 10−1 Gaussian noise. We randomly display 100 images out of 1000 in the batch for simplicity.

Original Batch MKOR on original VGG16 without noise

MKOR on original VGG16 with Gaussian (0.1) MKOR on modified network without noise

MKOR on modified network with Gaussian (0.1)

Figure 10. Input reconstruction on a random batch with 1000 ImageNet images, with either original VGG16 or modified network, and
with either no noise or 10−1 Gaussian noise. We randomly display 100 images out of 1000 in the batch for simplicity.

Original Batch MKOR (Ours)

Gradient Inversion Class Fishing

Figure 11. Single samples in batches of different input reconstruction methods on MNIST with original LeNet5 for a random batch of size
100.

Original Batch

Gradient Inversion

MKOR (Ours)

Class Fishing

Figure 12. Single samples in batches of different input reconstruction methods on CIFAR-100 for a unique batch of size 100.

Original Batch MKOR on original VGG16 without noise

MKOR on original VGG16 with Gaussian (0.1) MKOR on modified network without noise

MKOR on modified network with Gaussian (0.1)

Figure 13. Single samples in random batches with 1000 ImageNet images, with either original VGG16 or modified network, and with
either no noise or 10−1 Gaussian noise. .

