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Supplementary Material
A. Implementation Details

For all of our cross-modal GAN inversion experiments,
we utilize a pretrained StyleGAN3-T model [4] that was
trained on the WikiArt dataset1. We use this2 implemen-
tation in all our experiments. It is worth noting that the
performance of this StyleGAN3-T model may be restricted
by its pretraining dataset, which only involves the WikiArt
dataset. Nevertheless, despite using this domain-limited
StyleGAN3-T, our approach still remains competitive, as
evidenced by our qualitative findings and user study. By
employing more powerful generators, our approach can
achieve even better performance.

For cross-modal GAN inversion, we use Adam opti-
mizer [6] with a learning rate of 0.2. We set the summation
of all style weights {αI

i }
NI
i=1 and {αT

i }
NT
i=1 to be 1000.

To make fair comparisons with previous works, we set
the spatial resolution to 512 × 512 for all image data in
our framework. We use a patch size of 256 in all patch-
wise CLIP losses. To compute the proposed style-specific
CLIP loss, we use the CLIP ViT-B/32 [12] model. Follow-
ing [2, 5, 7, 11], we apply prompt augmentation [12] to all
text descriptions by default. When computing this loss, we
resize all inputs to 224×224 to make them compatible with
the image encoder of CLIP. Following [7], we apply random
perspective augmentation with a distortion scale of 0.5 to
all image data used in our main results. In other words, the
aug(·) function defined in our main paper is implemented as
RandomPerspective(fill=0, p=1, distortion scale=0.5) using
torchvision.transforms. It takes 20 iterations to run our
cross-modal GAN inversion. Our complete code will be
made available.

B. Style Text Descriptions and Content Images
We use 11 content images and 20 style images released

by [3]. We also use 50 square-shaped images randomly
sampled from COCO test set [8] as a supplement to our

1https://www.wikiart.org/
2https://github.com/Huage001/AdaAttN

content set. In addition, we manually collect 44 style text
descriptions, including those used by [7]. We list all style
text descriptions in the attached file, style text.txt. And we
put all content images in the content folder.

C. User Study Design
In our user studies, we ask professional annotators from

Scale AI3 to evaluate all our results.
In the main user study (i.e., Table 2 in the main paper),

we apply 44 distinctive text-described styles to 61 differ-
ent content images, giving 2,684 stylized images. For each
of them, we ask 10 different annotators to evaluate it from
three aspects: style consistency, content preservation, and
overall quality. For each aspect, annotators are asked if
the stylized image respects the aspect well (positive) or not
(negative). In total we obtain 26,840 responses, where each
stylized image received 10 responses.

In our user study for ablation study, we randomly pair
the style text descriptions and content images. Specifically,
we use all 44 style text descriptions, and pair each of them
with 23 randomly sampled content images for style transfer,
giving 1,012 stylized images.

In Table 1, we list the number of annotators involved in
each evaluation task. As is shown, our user study is based
on a sufficiently large number of annotators.

In Figures 5, 6, 7, and 8, we show the annotation user
interfaces for evaluating style consistency, content preser-
vation, overall quality, and ablation methods, respectively.
In addition, we further show several annotation examples in
Figures 9, 10, and 11. The number of positive responses re-
ceived for these images is listed at the bottom. We observe
that the evaluation results from annotators are reasonable
and consistent with the quality of stylized images.

D. Style Aggregation Strategy
In Multi-style Boosting (Section 5.1 of the main paper),

we propose to aggregate styles {Si}NS
i=1 to enhance style

transfer quality. The aggregation strategy depends on the
specific implementation of the IIST method M. Here we

3https://scale.com/
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Figure 1. Qualitative ablation study on different design choices. We compare our final method with all design choices used in Table 4
of the main paper. Zoom in for a better view.

Table 1. Number of annotators involved in each evaluation task
in our user study. Style, Content, and Overall are the three aspects
in our main user study. Ablation refers to all ablation experiments.

Task Number of Annotators

Style 872
Content 810
Overall 939
Ablation 5041

Table 2. Additional ablation study on different design choices.
The performance is evaluated through user study. For all these
design choices, the user preference percentages are less than 50%,
indicating that they are inferior to our method in the main paper.

Setting Preference % ↑
Retrieval + AdaAttN 31.1
StableDiffusion + AdaAttN 35.5
ExcludeInv4 44.5
ExcludeInv8 44.9
+ GlobalLoss 49.3

briefly describe the straightforward aggregation algorithm
for AdaAttN [9] as an example of M. Similar to many IIST
model [3, 10], AdaAttN M can be decomposed into a fea-
ture extraction network Mf and a style transfer module Mt.
Attention mechanism is used for Mt to process the output
features from Mf in AdaAttN.

After obtaining {Si}NS
i=1 from cross-modal GAN inver-

sion, we feed them into the feature extraction network Mf

separately and concatenate the outputs together over the se-
quential dimension at the attention layers in Mt. Since
attention layers adaptively focus on the best-matching re-
gions, they can benefit significantly from the high-quality
style patterns in the concatenated style representations,
while being free from the negative impact of low-quality
patterns. The concatenated feature is the F in the Algo-
rithm 2 of the main paper, which is directly used by Mt to
apply style transfer.

E. Latent Initialization

Similar to traditional GAN inversion [1], in cross-modal
GAN inversion, the quality of the generated image is sen-
sitive to the initial value of w. Traditional GAN inversion
methods often choose the mean latent w̄ of the dataset as
the initial w. Unfortunately, this initialization is not suitable
for our problem as there is no style text description dataset
available to compute w̄. To overcome this issue, we propose
to randomly sample a set of w, from which we pick the best
one based on Eq. 3 in the main paper. Formally, we first
sample multiple zi ∼ N (0, 1). Then we run the mapping
network of StyleGAN3 on them to obtain {wi}. Finally, we
calculate

ŵ = argmin
w∈{wi}

Lsty, (1)

as the initial value of the StyleGAN3 latent embedding.



Figure 2. Inverted style representation examples. The corre-
sponding style text description is displayed above each style rep-
resentation.

F. Additional Ablation Study

F.1. Qualitative Ablation Study

In order to visually explore the impact of various de-
sign choices, we conduct a qualitative ablation study illus-
trated in Fig. 1. All of the design choices outlined in Ta-
ble 4 of the main paper are considered. The results indi-
cate that a crop size of 128 (CropSize128) often leads to
either over-stylization or under-stylization. Furthermore,
the effect of different patch loss weights (PatchLoss500,
PatchLoss2500) is negligible, which aligns with the user
preference data presented in Table 4 of the main paper.
While omitting patch augmentation (NoAug) typically has
a minimal effect on the quality of the stylized images, it can
sometimes lead to errors such as the incorrect highlight-
ing of edges in the stylized image shown in the first row.
In contrast, the omission of patch cropping (NoCrop) can
have a more pronounced effect, resulting in oversimplified
styles. Finally, our ablation study confirms the importance
of multi-style boosting, as performance is significantly de-
graded when it is not utilized (NoBoosting).

F.2. Additional User Study

We report user study results for additional ablation study.
We follow the settings of the ablation user study conducted
in our main paper, and consider the text-guided image style
transfer task. We report the user preference percentage for
the additional design choices in Table 2.

Specifically, we first consider replacing our cross-modal
GAN inversion by image retrieval and a text-to-image gen-
erative model, respectively, i.e., Retrieval + AdaAttN and
StableDiffusion + AdaAttN. For image retrieval, we use
CLIP image embedding to retrieve a style representation
from WikiArt dataset, which is the same dataset that the
StyleGAN3 model was trained on. For the text-to-image
generative model, we use the open-source implementation
StableDiffusion4 of the LDMs [13]. We observe that our
method significantly outperforms these two design choices,
demonstrating the effectiveness of our cross-modal GAN
inversion method even if only the text-guided image style
transfer task is considered.

Next, we explore if the entire W+ space is important
to ensure the style transfer quality. Inspired by [14, 15],
we consider excluding the first 4 layers or 8 layers from
the inversion, i.e., ExcludeInv4 and ExcludeInv8. However,
we observe that these partial inversion techniques have a
negative impact on the style transfer quality.

Finally, inspired by [7], we consider adding a global
CLIP loss to the objective function of our cross-modal GAN
inversion, i.e., a CLIP loss without image patch cropping.
User study result indicates that this additional loss does not
improve the user preference percentage. Therefore, we do
not add this loss to our main method.

G. Additional Qualitative Results
Inverted Style Representation Examples. Fig. 2 shows
some examples of the inverted style representations from
style text descriptions. We can observe that many of them
do not contain meaningful content, however, they all exhibit
certain styles corresponding to the input style text descrip-
tions.
Additional Comparisons with TIST Methods. We show
comparison results on more text-image pairs in Figure 12.
These examples consistently demonstrate the overall supe-
riority of our method.
Additional MMIST Results. We show more
multimodality-guided image style transfer results in
Firgure 13. These examples demonstrate how our method
combines different styles and faithfully applies them to
various content images.

4https://github.com/CompVis/stable-diffusion



Figure 3. Problem of the content loss. This figure shows randomly picked stylized images and their content loss values. Note that they
are obtained from different randomly selected style transfer methods. The method names are intentionally hidden to ensure unbiased
perception. The fisrt image is the original content image and the remaining ones are the stylized images. Style text descriptions are shown
above the images. Content loss values are shown below the images. The highly stylized images (2nd and 4th) appear to incur a higher
content loss, even though they largely preserve the original content. In contrast, the 5th stylized image, which deviates minimally from the
content image, achieves the best content loss.

Figure 4. Problem of the content loss. This figure shows randomly picked stylized images and their content loss values. Note that they
are obtained from different randomly selected style transfer methods. The method names are intentionally hidden to ensure unbiased
perception. The fisrt image is the original content image and the remaining ones are the stylized images. Style text descriptions are shown
above the images. Content loss values are shown below the images. The nearly reconstructed stylized image (2nd) consistently achieves
the best content loss. More interestingly, the well-stylized image (4th) has a inferior content loss nearly identical to the completely distorted
image (1st). This indicates that content loss struggles to differentiate between style variations (4th) and content distortions (1st).

Additional Results of MMIST with Four Style Sources
and Cross-modal Style Interpolation. We also show addi-
tional MMIST resutls with style interpolation in Figures 14,
15 ,16, and 17. Same as Figure 6 in our main paper, these
figures show style interpolation results between 2 text style
descriptions and 2 style images. The interpolation ratio for
each column or row is fixed to be 1:0, 0.75:0.25, 0.5:0.5,
0.25:0.75, 0:1.

H. Ineffectiveness of Content Loss

Initially, we considered to utilize the content loss em-
ployed by CLIPStyler [7] as a metric for quantitative eval-
uation. However, both our theoretical insights and practical
experiments indicated that this content loss doesn not align
with human perception.

The content loss as defined in CLIPStyler [7] is calcu-
lated as the MSE Loss between the deep VGG features of
the stylized image and the content image. Given that VGG
is pretrained for recognition tasks, its deep features are
acutely sensitive to the distinct visual cues of an input im-
age, such as color and texture. However, variations in color
and texture do not necessarily correlate with alterations in
the content as perceived by humans. Moreover, modifica-
tions in color and texture are the essential outcomes of the
style transfer process. This implies that a smaller content
loss might indicate a less effective stylization outcome. In
the extreme case, an identity mapping function preserves all
the content information and has the smallest content loss,
but it is a trivial style transfer process and thus undesired.
Therefore, while employing content loss during training is



Figure 5. User interface for image evaluation in user study. Here we evaluate Style Consistency.

not problematic due to the concurrent use of style loss,
which ensures the style quality, its application as an eval-
uation metric is unsuitable.

To further validate our analysis regarding the limitations
of the content loss defined in CLIPStyler [7], we randomly
pick stylized images from different style transfer methods
and compute their content loss for comparison. The results
are shown in Figures 3 and 4. Note that the names of se-
lected methods are intentionally hidden to ensure unbiased
perception. In Figure 3, the highly stylized images (2nd
and 4th) appear to incur a higher content loss, even though
they largely preserve the original content. In contrast, the
5th stylized image, which deviates minimally from the con-
tent image, achieves the best content loss. In Figure 4, the
stylized image (2nd) which nearly reconstructs the original
image consistently achieves the best content loss. More in-

terestingly, the well-stylized image (4th) has a inferior con-
tent loss nearly identical to the completely distorted image
(1st). This indicates that content loss struggles to differen-
tiate between style variations (4th) and content distortions
(1st). In summary, the content loss defined in CLIPStyler
appears ill-equipped to differentiate between style modifi-
cations and content distortions. Therefore, we opt not to
use content loss as an evaluation metric in this paper.

I. Limitation
While our approach proves robust across various appli-

cations, it is intrinsically constrained by its reliance on the
pretrained style representation generator, the adapted IIST
method, and the CLIP model, which is utilized to construct
the loss function in the cross-modal GAN inversion algo-
rithm.



Figure 6. User interface for image evaluation in user study. Here we evaluate Content Preservation.

We utilize the WikiArt pretrained StyleGAN3 as our
style representation generator. While this model encom-
passes a broad spectrum of styles, its effectiveness can
be compromised when confronted with out-of-distribution
styles. This limitation arises from the finite scope of the
WikiArt dataset. Consequently, when presented with cer-
tain styles that are outside this dataset’s domain, our style
transfer outcomes might not achieve the desired quality.

Similarly, the efficacy of our solution is significantly in-
fluenced by the adapted IIST method. This component ex-
ecutes the style transfer after the generation of intermediate
style representations. If the adapted IIST method manifests
any limitations or biases, it can have a direct negative im-
pact on the results generated by our method.

Moreover, the CLIP model and the Style-specific CLIP
Loss are not perfect. Potential inaccuracies in these parts

may yield imprecise intermediate style representations, fur-
ther influencing the quality of the stylized images.

In addition, our method requires a per-sytle optimization
procedure for fast style transfer. However, this optimization
can be time-intensive, potentially hindering our method’s
application in time-sensitive scenarios. An alternative could
be training a feed-forward style transfer network to elimi-
nate the need for per-style optimization. We leave this po-
tential improvement direction as future work.



Figure 7. User interface for image evaluation in user study. Here we evaluate Overall Quality.



Figure 8. User interface for image evaluation in user study. This user interface is used for ablation studies.

Figure 9. Examples of Style Consistency annotations. At the bottom of each column we show the number of positive responses received
over the total response number.



Figure 10. Examples of Content Preservation annotations. At the bottom of each column we show the number of positive responses
received over the total response number.

Figure 11. Examples of Overall Quality annotations. At the bottom of each column we show the number of positive responses received
over the total response number.



Figure 12. Additional comparison with other TIST methods.



Figure 13. Additional MMIST results.



Figure 14. Additional MMIST results with four image and text styles and style interpolation. (1)



Figure 15. Additional MMIST results with four image and text styles and style interpolation. (2)



Figure 16. Additional MMIST results with four image and text styles and style interpolation. (3)



Figure 17. Additional MMIST results with four image and text styles and style interpolation. (4)
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