
Appendix for Neural Textured Deformable Meshes for Robust Analysis-by-Synthesis

A. Implementation Details
A.1. Differentiable Transformation Function

The differentiable transformation function takes inputs
of an UV fragment U (which is obtained via interpolate the
UV values of vertices using the barycentric weight from ras-
terization) and a feature F on the image coordinate, and
output the surface features F̂ with a visibility mask V . The
transformation compute gradient to both U and F .

Forward. As Figure 1 shows, for each four adjacent
pixels P = (p1, p2, p3, p4) pairs on the P ∈ U , we first
check if all of them are on the object. For each on-object
pixel pair, we find the corresponded quadrilateral on the sur-
face S. Then we compute the barycentric coordinates inside
the quadrilateral, which gives four weights w1, w2, w3, w4

on each surface pixel. Then we weighted sum the four fea-
ture vector on p1, p2, p3, p4 to compute the final value on
the output surface feature:

F(u,v) = w1 · Fp1 + w2 · Fp2 + w3 · Fp3 + w4 · Fp4 (1)

In our implementation, for those cases that a pixel on sur-
face is covered by multiple quadrilateral, we take a aver-
age of the value via store the total weight per surface pixels
ŵ(u,v) =

∑
P∈U

∑4
k wk. Then the visibility mask is com-

puted as the area that ŵ(u,v) > 0. Also, in order to get rid
of the quadrilateral cross the left to right or top to bottom
boundary, we skip the quadrilateral larger than a threshold
(set to be 0.2 of the surface size).

Backward. In the backward process, assume the final
loss is computed as L and the up stream loss to the layer is

∂L
∂F(u,v)

on each surface pixel. The overall loss to the input
feature is computed as:

∂L

∂Fp
=

∑
P∈U

wk · ∂L

∂F(u,v)
(2)

where k ∈ {1, 2, 3, 4} is the index of pk in the P . We
compute the index lookup table during the forward process
and save it for usage in backward. On the other hand, the
gradient to u ∈ U is computed via:

∂L

∂up
=

∂L

∂F(u,v)
·
∑
P∈U

∂F(u,v)

∂wk
· ∂wk

∂upk

(3)

where

∂wk

∂upk

=
∂wk

∂upk

·
∑4

j ̸=k wj∑4
j wj

−
4∑

i ̸=k

∂wi
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j wj

(4)

and
∂F(u,v)

∂wk
=

∑
c∈C

F c
(u,v), (5)

Figure 1. Each four adjacent pixel in the UV fragment is interpo-
lated as a quadrilateral with barycentric coordinates.
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Figure 2. Network structure of mesh deformation MLP.

C is dimension of the features. Note, in practice, we don’t
look up each pixel pairs on U to compute the sum, instead,
we store the lookup and weight wk for each pixel (maxi-
mum 10 quadrilaterals per pixel) in the surface coordinate
to reduce computation costs.

We implement the function using CUDA and packed as a
PyTorch auto-gradient function, which are potentially use-
ful for future projects, e.g. texture extraction.

A.2. Deformable Mesh

Figure 2, show the network structure of the MLP net-
work which controls the deformation of the meshes.

A.3. Contrastive Loss

Figure 3 shows the implementation details of our train-
ing loss. Specifically, in each training step, we sample
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Figure 3. Training Loss.



Figure 4. Qualitative results of all 12 categories on PASCAL3D+ dataset [6].

1000 uv pairs on the transformed image features F . For
each sampled feature from the training data uv = u′v′,
we sample the corresponding feature from the neural tex-
ture θuv=u′v′ , and concatenate it with 3200 negative sam-
ples uv from 20 pixels away from u′v′ (specifically 2000
features from the background βj and 200 features from ev-
ery other category θc̸=c′

q ). Subsequently, we compute the
cosine similarity between the image features and other col-
lected features and apply the cross-entropy loss. Such loss
will make features from the same location on the object sim-
ilar while making it different from other parts, backgrounds,
and other classes. When applying the cross-entropy loss, we
use WML = 1,WCon = 1,WClass = 1 and WBG = 0.1.

A.4. Multi-Task Mask RCNN

To compare DMNT with traditional multi-head network
architectures, we extend a Mask R-CNN model [1] with a
pose estimation head. More specifically, the MT Mask R-
CNN model consists of three heads, a classification head, a
pose estimation head, and a mask segmentation head. We
adopt the classification head and mask segmentation head
from the official PyTorch [3] implementation. We follow
the loss functions defined in [1]. To provide the ground-
truth masks for Mask R-CNN, we compute the projection
of the known CAD models given the annotated principal
points and 3D poses. In terms of the pose estimation head,
we follow [2,4] that formulate the pose estimation as a clas-
sification task. We follow the implementations in [7] to
reproduce the results. Formally, the MT Mask R-CNN is
end-to-end supervised by a multi-task loss given by

L = Lcls + Lbox + Lmask + Lpose (6)

B. Additional Qualitative Results
In this section, we provide additional qualitative results

to demonstrate the capabilities of DMNT under various set-
tings.

PASCAL3D+. We visualize the predictions of DMNT on
PASCAL3D+ dataset [6] in Figure 4. By learning a 3D de-
formable neural representation, DMNT solve multiple tasks
from a holistic perspective. As we can see from Figure 4,
DMNT predicts accurate object poses, good amodal seg-
mentations, as well as class labels.

Occluded PASCAL3D+. We also visualize the results on
Occluded PASCAL3D+ dataset [5] in Figure 5. As we can
see, DMNT is very robust to partial occlusion and can accu-
rately capture the 3D pose and object boundaries from the
visible part of the object.

Failed examples. To investigate the limitations of our
model, we also looked into some failed cases from PAS-
CAL3D+ [6] and Occluded PASCAL3D+ dataset [5],
which are shown in Figure 6. In Figure 6(a), DMNT failed
to predict accurate amodal segmentation because the wheels
of the car in the background resemble the wheels of the mo-
torbike. In Figure 6(b), the novel parts of the aeroplane, i.e.,
wings, are largely dominated by the occluders, and DMNT
failed to predict good object pose. DMNT couldn’t pre-
dict good object boundaries in Figure 6(c) since this boat
has a different shape from the known CAD models in PAS-
CAL3D+ and the body of the boat is heavily occluded.



Figure 5. Qualitative results of all 12 categories on Occluded PASCAL3D+ dataset [5].

Figure 6. Some failed examples from PASCAL3D+ dataset [6] and Occluded PASCAL3D+ dataset [5].
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