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Appendices

Appendix. A More Implementation Details

Data Processing. For a fair comparison with ATRC [1], In-

vPT [6] and TaskPrompter [7], we follow their data process-

ing pipeline. On PASCAL-Context [2], we pad the image to

the size of 512 × 512, while on NYUD-v2 [5], we randomly

crop the input image to the size of 448 × 576. We use typi-

cal data augmentation including random scaling, cropping,

horizontal flipping and color jittering.

Implementation Details of Encoder Feature Fusion. For

ViT [3] encoders, we follow InvPT [6] implementation

choosing 3 layers based on the depth and unfolding their

output spatially, and then use transposed convolution to up-

sample the resolution of feature maps to match the spatial

resolution in the corresponding decoder stage before the

further transformation. Specifically, for ViT-base encoder,

using the output token sequences of layer 3, 6, and 9, while

for ViT-large encoder using output token sequences of layer

6, 12, and 18. The encoder feature fusion module procures

multi-task encoder features of different scales from the pre-

ceding layers. The kernel size and stride of the transposed

convolution for the feature at the first scale are 4, and those

at the second scale are 2. The fused coarse multi-task en-

coder feature and the fine multi-task feature after interme-

diate supervision participate in cross-attention operations to

forward in the decoder.

Appendix. B More Experimental Results and
Analysis

Shared encoder vs. unshared encoder. We advocate

that different tasks are closely related, and a shared en-

coder makes various tasks share the same low-level fea-

tures (layers 1-12) and different but task-specific high-level

features(layers 13-24). Other than using a shared encoder,

Method
Semseg

(IoU)↑

Depth

(RMSE)↓

Normal

(mErr)↓

Boundary

(odsF)↑

unshared 54.03 0.5121 18.86 78.00

shared 55.39 0.4961 18.44 77.50

Table 1. Ablation for shared encoder on NYUD-v2. Performance

with the shared encoder is better for all the tasks except for bound-

ary detection.

we also report the performance based on task-specific en-

coders where different encoders with task-specific prompts

are learned for different tasks. It means that our encoder

has a different branch for each task, and the different tasks

in the encoder stage are completely independent, without

any interaction between tasks and no shared parameters in

the encoder.

Results on NYUD-v2 with different encoder design

strategies are reported in Table 1. It shows that the results

with the shared encoder are better for all the tasks except for

boundary detection. The possible reason is that semantic

segmentation, depth estimation, and surface normal estima-

tion are more closely related tasks. In contrast, its relation

to other tasks is not that strong for boundary detection. The

difference in performance gain is the task competition prob-

lem in training. Thus learned task-specific encoder may not

be a wrong choice for boundary detection.

Prompts Initialization. Prompt tuning first emerged in the

field of NLP, and the research on prompt initialization is an

important field. Visual prompt tuning [4] also studies the

initialization method of the prompts, but it is only a tuning

setting. Compared with Visual prompt tuning, the model

parameters that can be optimized vary greatly in our multi-

task learning method. The conclusions drawn above do not

necessarily apply to our multi-task transformer network.
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method
SemSeg

(IoU)↑

Depth

(RMSE)↓

Normal

(mErr)↓

Boundary

(odsF)↑

zeros 55.39 0.4961 18.44 77.50

random 54.31 0.5069 18.67 77.40

ones 54.61 0.4962 18.66 77.50

Table 2. Performance with different prompt initialization strate-

gies on NYUD-v2. It’s impressive that our default initialization

zeros, generally works the best.

We compare the performance using the above initializa-

tion strategy against the default zeros initialization in Table

2. As shown in Table 2, it’s impressive that our default ini-

tialization zeros, works the best in general.
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Figure 1. Qualitative analysis of different model variants (shal-

low: 1− 12 and deep: 13− 24) on PASCAL-Context. Results of

different model variants are shown by Table 3.

Dataset size and task numbers. We conduct extensive ex-

periments on NYUD-v2 and PASCAL- Context for perfor-

mance evaluation, but our experiments reveal inconsistent

patterns between the two datasets. Compared to the NYUD-

v2 dataset, the PASCAL-Context dataset has a larger data

size, a greater number of tasks, and a distinct data distribu-

tion. We believe these factors account for the discrepancies

observed in some experimental results.

For NYUD-v2, there is no significant difference between

Layers with prompts
Semseg

(IoU)↑

Depth

(RMSE)↓

Normal

(mErr)↓

Boundary

(odsF)↑

w/o prompt 53.56 0.5183 19.04 78.10

1-12 54.96 0.4948 18.72 77.40

13-24 55.39 0.4961 18.44 77.50

(a) The performance with prompts positions on NYUD-v2

Layers with prompts
Semseg

(IoU)↑

Parsing

(IoU)↑

Saliency

(maxF)↑

Normal

(mErr)↓

Boundary

(odsF)↑

w/o prompt 79.03 67.61 84.81 14.15 73.00

1-12 81.48 70.64 84.86 13.69 74.80

13-24 80.64 69.53 84.67 13.83 74.20

(b) The performance with prompts positions on PASCAL-Context

Table 3. The performance with prompts positions on two different

datasets. Unlike the NYUD-v2 dataset, the placement depth of the

task prompts substantially impacts performance, particularly for

higher-level scene understanding tasks such as Semseg and Pars-

ing on PASCAL-Context.
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Figure 2. Qualitative comparison with state-of-the-art method on

NYUD-v2. Our method generates more accurate predictions.

the task prompts positions with the same layer range length

in the shallow (1 − 12) and deep (13 − 24) layers of the

encoder as shown in Table 3 (a). In fact, the results are

slightly better in the task prompts positions with deeper lay-

ers. However, this is not the case with another PASCAL-

Context dataset as shown in Table 3 (b). The positions has

a more substantial impact on performance, particularly for

certain higher-level scene understanding tasks such as Sem-

seg and Parsing. A potential reason for this discrepancy

is that high-level tasks demand more task-specific informa-

tion, particularly as the size of data increases, task prompts

positions with shallow layers leading to a finer decoupling

of features from encoder.

Computation cost. Table 4 shows the computation cost of

our proposed model, detailing the GFLOPs and the num-

ber of model parameters across different model variants,

along with corresponding performances on the NYUD-v2

and PASCAL-Context datasets. Our model variants de-

manding higher computational resources do not necessar-

ily guarantee superior overall performance, indicating the



Layers with prompts Prompt token numbers
Semseg

(IoU)↑

Depth

(RMSE)↓

Normal

(mErr)↓

Boundary

(odsF)↑

GFlops

(G)

Number of parameters

(M)

w/o prompt (InvPT) 0 53.56 0.5183 19.04 78.10 597.67 402.09

24 1 53.97 0.5038 18.63 77.50 654.17 402.10

13-24 5 55.39 0.4961 18.44 77.50 1146.24 402.34

1-12 5 54.96 0.4948 18.72 77.40 1681.11 402.34

1-24 5 55.80 0.4898 18.63 77.60 1685.13 402.58

The performance and compute cost with different prompts inserting positions and prompt token numbers for each task on NYUD-v2.

Layers with prompts Prompt token numbers
Semseg

(IoU)↑

Parsing

(IoU)↑

Saliency

(maxF)↑

Normal

(mErr)↓

Boundary

(odsF)↑

GFlops

(G)

Number of parameters

(M)

w/o prompt (InvPT) 0 79.03 67.61 84.81 14.15 73.00 668.29 422.93

24 1 80.08 69.12 84.46 13.85 74.10 744.94 422.94

13-24 5 80.64 69.53 84.67 13.83 74.20 1412.52 423.24

1-12 5 81.48 70.64 84.86 13.69 74.80 2138.61 423.24

1-24 5 81.63 70.69 84.90 13.81 74.70 2143.65 423.54

The performance and compute cost with different prompts inserting positions and prompt token numbers for each task on PASCAL-Context.

Table 4. On our most efficient model variant, which introduces only one task prompt token for each task on the last transformer encoder

layer, the performance improvement is also significant, accompanied by a slight increase in the number of parameters and GFlops. It

can also be seen that the shared vanilla layer placed in the shallow layer (layers with prompts: 24, 13-24) can drastically reduce the

computational load in terms of GFlops, and there is almost a negligible increase in the number of parameters across all of our model

variants.
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Figure 3. Qualitative comparison with state-of-the-art method on PASCAL-Context. Our method generates more accurate predictions.



existence of a trade-off between performance and compu-

tation. The most efficient model variant, which introduces

only one task prompt token to each task on the last trans-

former encoder layer, demonstrates significant performance

improvement with a modest increase in parameter count and

GFLOPs. Furthermore, our results show that placing the

shared vanilla layer in the shallow layer can drastically re-

duce the computational load in terms of GFLOPs. More-

over, across all our model variants, we observe only a nearly

negligible increase in the number of parameters.

More qualitative results. We show more prediction results

by our method and InvPT on the NYUD-v2 and PASCAL-

Context dataset in Fig. 2 and Fig. 3. It is clear that our

method produces significantly better results than InvPT, es-

pecially on semantic segmentation, depth estimation and

human parsing.
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