A. Supplementary Material
A.l. S annealing schedule
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A.2. Proof of Constraint Projection

Proof for Eq. 6 and Eq. 7 is taken and adapted from [38].
Transforming updated parameters 6 € RP into 6, which
fulfills the sparsification constraint can be described as a
least-squares convex problem:
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This can be solved by the Lagrangian multiplier method:
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where A > 0 and 0 < #; < 1. Minimizing w.r.t. @ results in

0=1;_x1>1+ (5= A1)155-21>0- (12)
Thus, for A > 0
g(\) = £(6,))
1 ~
=SlE—AL-+[0-(A+ 1] []?
_ D
T 2

= 2lll5 = AT][|+ 516 — O+ DL
+A176-0) - gv
and
g\ =1TA1 -0, +1T[A+1)1—6]_
+(176—-6)— D
= 1" min(1, max(0,6 — A\1)) — S
= [Zil min(1, max(0,6; — A))] — S.

(14)

With ¢’ () being a monotone function, A} a solution for
¢g’(A) = 0 can be obtained by e.g. a convex solver or a

bisection method. The maximum of g(\) with A > 0 is at
A3 = max(0, \}). Eventually,
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= min(1, max(0,0 — A\31) (16)
= min(1, max(0, 6 — max(0, \})1). 17



