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In this supplementary material, we provide (i) additional

information on the equivalence of the two definitions for Q
in Section 3.1 of the main paper, (ii) further implementation

details on our algorithm, (iii) additional information on the

evaluation metrics used in Section 4.1 of the main text, (iv)

an ablation study on the key parameter of our method, σ,

(v) a practical strategy on how to empirically choose σ, and

finally (vi) some additional qualitative results.

1. Equivalence of Q

In Section 3.1 of the main paper, the set Q was defined

as

Q := {x ∈ M | (x− x̄)TC−1(x− x̄) ≤ k} ⊆ R
dn, (1)

where k ∈ [0, 1]. We claimed that, in terms of a probabilis-

tic interpretation, Q can be equivalently rewritten as

Q = {x ∈ M | p(x) ≥ ξ} (2)

with ξ ∈ [0, 1], see Eq. (3) of the main paper. This can be

easily verified by
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Hence, the hyper-ellipsoid Q contains all likely shapes, i.e.,

those with a probability greater than a certain threshold, ξ.

2. Implementation Details

We use Markov chain Monte Carlo (MCMC) to estimate

the posterior distribution p(x |x ∈ Iϵ) for x ∈ Q1 (and Q2,

respectively) as stated in Eq. (7) of the main paper. The

Markov chain is built by means of the Metropolis-Hastings

Algorithm 1 Metropolis-Hastings algorithm (symmetric

proposal distribution)

1: Initialize α0; set x0 = f1(α0).
2: for i = 0, 1, . . . ,m do

3: Draw sample α′ from Q(α′ |αi); set x′ = f1(α
′).

4: Compute acceptance ratio as

t =
L(x′;x′ ∈ Iϵ)p(x

′)

L(xi;xi ∈ Iϵ)p(xi)
.

5: Accept α′ with probability t by drawing a sample r
from U(0, 1) and

αi+1 =

{

α′ if t > r,

αi otherwise.

6: end for

7: return {f1(α0), f1(α1), . . . , f1(αm)}

(MH) algorithm, summarized in Algorithm 1. The MH al-

gorithms requires a proposal distribution Q(α′ |α), condi-

tioned on the current state α ∈ R
q1 . We use a random walk

mixture proposal of the form:

Q(α′ |α) =
n
∑

i=1

ciQi(α
′ |α) with

n
∑

i=1

ci = 1. (4)

In our specific implementation, we set n = 4 and defined:

Q1(α
′ |α) = N (α, 0.2), c1 = 0.1,

Q2(α
′ |α) = N (α, 0.1), c2 = 0.5,

Q3(α
′ |α) = N (α, 0.025), c3 = 0.2,

Q4(α
′ |α) = N (∥α∥, 0.2), c4 = 0.2.

(5)

This proposal distribution was originally presented in [5]

and we left it unchanged. Note that proposal is symmetric,

i.e., Q(α′ |α) = Q(α |α′), since all mixture components

are Gaussian.

Having the proposal distribution in mind, the MH algo-

rithm proceeds as follows: In every iteration, a new sam-

ple α′ is proposed based only on the previous sample, αi.



The proposed sample is then either accepted or rejected with

probability t, where t is the so-called acceptance ratio. Af-

ter a sufficient number of iterations, m, the MH algorithm

returns a set of accepted samples from the desired posterior

distribution, p(x |x ∈ Iϵ).

3. Evaluation Metrics

We now provide some additional information on the

evaluation metrics used for quantitative analysis as briefly

explained in Section 4.1 of the main paper.

Grassmann distance. The Grassmann distance is the

natural distance between two linear subspaces embedded in

R
n (the set of all k-dimensional linear subspaces is called

the Grassmannian, usually denoted as Gr(k, n)). Given or-

thonormal bases A,B ∈ R
k×n for two subspaces from

Gr(k, n), the Grassmann distance can be calculated by

means of the principal angles {θ1, θ2, . . . , θk} between the

two subspaces. With slight abuse of notation but for the

sake of brevity, we refer to the Grassmann distance as

dG(A,B) = ∥(θ1, θ2, . . . , θk)∥2.

Since SSMs span affine subspaces, the Grassmann dis-

tance as presented previously can not directly be applied

to measure distances between subspaces spanned by lin-

ear shape models. Fortunately, as shown in [4] (Theorem

7), the Grassmann distance can be easily extended to affine

subspaces as we briefly explain next. The key idea is to

embed the affine subspace into a linear subspace by adding

one dimension. Given two affine subspaces represented by

orthonormal bases A,B ∈ R
k×n and displacement vectors

b, c ∈ R
n, their Stiefel coordinates, Y1, Y2 ∈ R

(k+1)×n are

given by
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where b0 and c0 are unit vectors orthogonal to the columns

of A and B, respectively. We compute them by

b′ = b−
k

∑

j=1

(aj · b)aj , b0 =
b′

∥b′∥2
, (8)

and analogously for c0. Here, aj ∈ R
n, j = 1, . . . , k,

denote the columns of A. Finally, the affine Grassmann dis-

tance is computed by applying Singular Value Decomposi-

tion to Y T
1 Y2, yielding the k + 1 principal angles between

the respective affine subspaces. Taking the Euclidean norm

of those angles leads to the affine Grassmann distance.

Reconstruction error. Following the main paper, to

evaluate the quality of the computed differences, we ex-

ploit the fact that we have samples {x1, x2, . . . , xr} from

the ground-truth difference, D12 (or D21). Denote the

Figure 1. Results of the ablation study for different values of σ,

averaged over all six star models (described in the main paper).

Top: Grassmann distance between estimated intersection space

and ground-truth intersection; center: mean squared error between

MCMC samples and their corresponding projections into the other

model (averaged over all posterior samples); bottom: acceptance

rates during MCMC sampling.

MCMC samples from the estimated difference D̂12 as

{x̂1, x̂2, . . . , x̂r}. We then evaluate the quality of D̂12 by

quantifying whether or not samples x̂j can be as badly rep-

resented in the ground-truth intersection, I , as samples xj

from the ground-truth difference. Here, we expect high er-

rors since shapes belong to the difference if they can not be

represented in the intersection. Formally, we calculate the

reconstruction errors

dR(D12, I) =
1

r

r
∑

j=1

d(projMI
(xi), xi) (9)

and

dR(D̂12, I) =
1

r

r
∑

j=1

d(projMI
(x̂i), x̂i) (10)

by projecting samples onto the subspace MI spanned by

I and evaluating its distance using the mean squared error

(MSE; see Eq. (10) of the main paper).



Male Female Intersection Male without female Female without male

Figure 2. Random samples from the male and female color model of the LYHM [1] data set (1st and 2nd block) as well as samples of the

computed intersection space (3rd block), and respective differences (male without female, and female without male, 4th and 5th block).

Similar to shape (see Figure 3 of the main paper), we see stronger male and female dominance in the differences and neutral gender in the

intersection, especially visible in the beard region. All color samples are visualized on the mean face.

4. Ablation Study

We identified the variance involved in the distance likeli-

hood, σ2, as the most important parameter of our algorithm

(see Eq. (9) of the main paper). To study its effects, in ad-

dition to the quantitative evaluation presented in the main

text, we also provide an ablation study for different values

of σ. The ablation is carried out on the star data set as de-

scribed in Section 4.1.1 of the main paper (see also Table 1

of the main paper). Moreover, we only investigate the es-

timation of ground-truth intersection spaces as our method

shows similar behavior for differences.

The results can be found in Figure 1 (top row), averaged

over all six star models. As seen, setting σ too high leads to

large Grassmann distances, implying a worse estimation of

the ground-truth intersection. Contrary, the smaller σ, the

better the estimation of the true intersection space. Inter-

estingly, starting from σ = 0.003, its exact value seems to

become less critical as even a decrease of factor 10 does not

lead to significant changes.

5. How to Choose σ In Practice?

Since we usually do not have ground-truth intersections

for real-world SSMs, it is natural to wonder how to empiri-

cally validate the performance of our method and the chosen

σ in practice. To this end, we also report the MSE between

an MCMC sample, x ∈ Q1 (or x ∈ Q2), and its projec-

tion into the other model, x′, as well as the acceptance rates

during MCMC sampling, see Figure 1 (center and bottom

row). Note that the MSE is computed between all posterior

samples and their respective projections; the average thus

serves as an empirical estimation for the mean ϵ in Eqs. (5)

and (6) of the main text.

In terms of MSE, we observe an almost similar behav-

ior as for the Grassmann distances. Smaller MSEs corre-

spond to lower Grassmann distances. As a result of this

Id. w\o expr. Expr. w\o id.Identity Expression Intersection

F w\o mM w\o fFemaleMale Intersection

Figure 3. Random samples from the male and female models (top)

and identity and expression models (bottom) of FLAME (1st and

2nd block). Also shown are samples of the computed intersection

model (3rd block) as well as from the difference between male and

female (top) and identity and expression models (bottom; 4th and

5th block). We observe very similar results as for LYHM models

and BFM 2019 [2], see Figures 3 and 4 of the main paper.

correlation, the distance between x and x′ can be used as an

indication to determine a suitable value for σ. It does not

require a ground-truth and can be easily monitored during

the run time of MCMC. To avoid setting σ too small (and

preventing incorrect estimation of the desired distribution),

however, one should ensure that the acceptance rates are be-

tween 0.25 and 0.5, see [5].

In conclusion, although a suitable value for σ might not

be trivial to determine in practice, it can be well chosen

by carefully inspecting the MSE between posterior samples

and their corresponding projections as well as acceptance

rates during MCMC sampling. Both quantities can be eas-

ily computed without the necessity of ground-truth intersec-

tions or differences.



Identity Expression Intersection Id. w\o expr. Expr. w\o id.

Figure 4. Per-vertex level visualization of similarities and differ-

ences between the identity and expression spaces of FLAME. De-

picted is the per-vertex variance of identity and expression mod-

els as well as the posterior variance for the computed intersection

model and differences (red high variance, blue low). We observe a

similar behavior as for BFM 2019, see Figure 5 of the main paper.

6. Additional Qualitative Results

In this section, we provide results for the extension to

color experiment (Section 4.3 of the main paper) as well as

additional qualitative results on the FLAME [3] model.

Extension to color. The results are shown in Figure 2.

We observe very similar behavior for the color as we have

seen for shape, see Figure 3 of the main paper. Male fea-

tures are exaggerated in faces drawn from the difference of

male and female, and samples from the difference of female

and male appear more feminine than faces from the origi-

nal female model. Similar to the effect in shape, we also

perceive neutral textures in the intersection space.

Results on FLAME. We show exemplary results on

FLAME in Figures 3 and 4. They are very similar to the

findings presented in the main paper, please refer to Figures

3±5 of the main paper.
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