
6. Appendix

6.1. Training and Inference Procedure

During the training process, we input the whole trajectories X�Tp:0, X1:Tf and recover them. The procedure is illustrated
as follows:

Algorithm 1 Training Procedure
Input: X�Tp:0, X1:Tf , N

1: for i = 1 to N do

2: Construct interactive graphs G�Tp:Tf = fg(X�Tp:0, X1:Tf ) in real-world space as Eq 1.
3: Generate latent vectors for the whole trajectories µq,�q = genc(X�Tp:0, X1:Tf ) and only previous trajectories

µp,�p = genc(X�Tp:0) as Eq 2.
4: Generate initial values h�Tp , latent trajectories and real-wolrd trajectories X̂�Tp:Tf as Eq 3 ⇠ 6 using µq,�q and

interactive graphs G�Tp:Tf .
5: Compute ELBO loss based on µq,�q, µp,�p, X̂1:Tf , X1:Tf . Compute MSE loss based on X̂�Tp:0, X�Tp:0. Compute

Graph consistency loss based on G�Tp:Tf .
6: Update the parameters � and ✓ by optimizing the loss function.
7: end for

8: return network parameters � and ✓

During the inference process, we only input the previous trajectories X�Tp:0 to estimate the future trajectories X1:Tf . The
procedure is illustrated as follows:

Algorithm 2 Inference Procedure
Input: X�Tp:0

1: Construct interactive graphs G�Tp:0 = fg(X�Tp:0) in real-world space as Eq 1.
2: Generate latent vectors for the previous trajectories µp,�p = genc(X�Tp:0) as Eq 2.
3: Generate initial values h�Tp , latent trajectories and real-wolrd trajectories X̂�Tp:Tf as Eq 3 ⇠ 6 using µp,�p and inter-

active graphs G�Tp:0.
4: return estimated future trajectories X̂1:Tf

6.2. More Visualization Results

Static Obstacle. In Figure 4, we provide additional visualization results of our Agent Graph ODE approach when faced
with sudden static obstacles. These results demonstrate that our proposed method can effectively handle such obstacles.

(a) AgentFormer (c) Agent ODE

Figure 4. More visualization of Agent Graph ODE in a sudden obstacle scenario. The figure displays input trajectories in blue and predicted
trajectories in white, with a black point representing the sudden obstacle. The Agent Graph ODE approach successfully avoids the static
obstacle in each scenario.



Moving Obstacle. We also conducted experiments where we placed one obstacle in the original trajectory and made it
move against the original trajectory. Videos of these experiments can be found in the ”moving obstacle” folder. The videos
demonstrate that our approach can successfully avoid moving obstacles, which is more challenging than static obstacles.

6.3. Loss Function

We have the loss function as follows:

L = ↵1Lelbo + ↵2Lmse + ↵3Lg,

where Lelbo is the ELBO loss in CVAE, Lmse is the loss for recovering input previous trajectories and Lg is the loss for
consistency for graph construction in real-world space and latent space.

We derive the Lelbo. In CVAE, we aim to approximate the conditional probability p(X1:Tf |X�Tp:0). We have
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Therefore, we use negative evidence lower bound (ELBO) Lelbo as follows:

Lelbo =� Eq�(h�Tp |X�Tp:0,X1:Tf
)[log p✓(X1:Tf |X�Tp:0, h�Tp)] +KL(q�(h�Tp |X�Tp:0, X1:Tf )||p✓(h�Tp |X�Tp:0)).

The first term in the ELBO loss is the reconstruction term, which means that we input the whole trajectories X�Tp:0, X1:Tf

to generate initial values h�Tp . Then we generate the future trajectories given previous trajectories and initial values.
Because the future trajectories are determined by the initial values and ODEs, we have log p✓(X1:Tf |X�Tp:0, h�Tp) =

log p✓(X1:Tf |h�Tp). We use Gaussian distribution to model X1:Tf ⇠ N(X̂1:Tf ,⌃), where X̂1:Tf is the estimated future
trajectories by solving ODEs given initial values h�Tp and ⌃ is a diagonal matrix. Then we have
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where k is the coefficient, which we set as the hyperparameter in training. Here, the term � log[(2⇡)n/2|⌃|1/2] is a constant
and does not require optimization.

The second term in the ELBO loss is the prior matching term, which makes the posterior probability of h�Tp given the
whole trajectories X�Tp:0, X1:Tf approach to the prior probability of h�Tp only given the previous trajectories X�Tp:0.



The reason is that the whole trajectories and only the previous trajectories should have similar values. We assume
q�(h�Tp |X�Tp:0, X1:Tf ) = N(µq,�q) and p✓(h�Tp |X�Tp:0) = N(µp,�p), where µq,�q are the output of the encoder
given the whole trajectories and µp,�p are the output given only previous trajectories. The KL divergence between two
Gaussian distributions is
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where J is the dimension of the latent initial value h�Tp and µq,j is the value in jth dimension.
Therefore, the ELBO loss in CVAE should be
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