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In this appendix, we present more examples of the data.
We further specify the information and metadata about the
Growing Strawberries Dataset (GSD). We provide details
about the parameter tuning and camera-wise performance of
the algorithms. We also present more details of the dataset
collection setup.

A. Hosting, licensing, and organization info.
A.1. Data Structure

The Growing Strawberries
GSD-Images

<year> (2021/2022)
<camera> (RGB/OCN-1/2/3)

img

*.jpg
GSD-Annotations

<cam.>(RGB/OCN-1/2/3-’21/22).json
<cam.>(RGB/OCN-1/2/3-’21/22).txt

GSD-Sample
img

*.JPG(with original filenames)
gt.json
gt.txt
GSD-sample_video.mp4

A.2. License

GSD is released under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-
NC-ND 4.0) license.

A.3. Terms of Use

By accessing and using GSD, users agree to comply with
the terms and conditions outlined in the CC BY-NC-ND 4.0
license. Users are responsible for ensuring the appropriate
use of the dataset in accordance with the license and any
applicable laws or regulations.

A.4. Author statement

The corresponding authors state that they collected the
data as described in this document and in the main paper. The
authors have the right to publish this dataset. GSD is licensed
under the CC BY-NC-ND 4.0 license. Users of this dataset
are required to comply with the license terms, including
providing proper attribution when using the dataset. We
provide the dataset "as is", without any warranty or guarantee
of its accuracy or reliability. We disclaim any liability for
errors, damages, or consequences arising from the use of the
dataset.

A.5. Hosting and Maintenance Plan

GSD is hosted and maintained on 4TU.ResearchData Plat-
form. It is published with a DOI: doi.org/10.4121/
e3b31ece-cc88-4638-be10-8ccdd4c5f2f7.v1
for long-term accessibility and versioning under the CC BY-
NC-ND 4.0 license.

B. Examples of data and annotation
B.1. Data Sample

We provide a small sample of GSD along with the origi-
nal dataset, under the file folder GSD-Sample. The sample
includes images collected from 2021-09-01 to 2021-09-02
by RGB-3, and the corresponding annotations in a coco-
format JSON file and a TXT file compatible with the MOT
evaluation tools. The images are with the original filenames
assigned by the cameras when the photos were taken.

Along with the data sample, we also provide a short
video to illustrate a subsequence of GSD. The video presents
the growth monitoring of strawberries from 2021-09-01 to
2021-09-07 in RGB-3. In this video, two drastic location
changes happened between 12-1 pm, 01.09, and between
5-6 pm, 06.09 because of the harvests. It could be noticed
that strawberries 355 and 354 switched positions suddenly
between frame 1-2 pm, 07.09, because of the harvest of 391.
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This exemplifies the irregular movements of the GSD objects.
The video is accessible in the GSD-Sample file folder.

B.2. Examples camera views and bbox annotations

Fig. 4 gives a sample view of each camera, collected at
the same moment. The view of RGB and OCN cameras
in each pair has a horizontal shift due to the parallel setup,
as can be seen in Fig. 10. Some small dislocations among
the images resulted from the camera shaking from practice.
Many static reference objects can be found in the images for
re-alignment of the two views.

B.3. Selection of image data

We have divided the set of images into a daytime subset,
which has a brightness (Luma) of at least 50, and a dark im-
age set which is not annotated. We calculated the brightness
(Luma) of images according to [1], and here exemplify the
brightness levels in Fig. 1. We illustrate the example images
and the corresponding Luma to show that 50 is a rational
threshold to select the “day-image" and “dark-image" sub-
sets. An overview of the proportions of images with different
levels of brightness is shown in Fig. 2.

B.4. Examples of trajectories

Since the cameras are static and strawberries do not travel
long distances in their life cycle, many strawberries in GSD
have a complete trajectory of their life cycle. Figure 1 in the
main paper depicts a strawberry located at the outer layer and
was mostly observable during its growth. However, not all
of the strawberries were completely monitored. According
to Fig. 3, there are still relatively short tracks.

There are several reasons for the incomplete observations:
1. The strawberries were growing in dense gathers, as can

be observed in the sample views and the video (partic-
ularly, the branch in the camera RGB-2 and OCN-2
in Fig. 4). Inner-layer strawberries were occluded, but
they might also switch positions with others due to
different speeds of weight growing.

2. Strawberries from the inner layer started to have more
complete observations when the outer-layer strawber-
ries were harvested. For example, radical position
changes can be observed in the demo videos.

3. The increases in size and weight might squeeze some
strawberries out of frame. For example, the strawberry
#397 in the view from RGB-2 in Fig. 4; the strawberry
#596 in the video (RGB part) also moves back and forth
at the edge of the frame.

4. Some strawberries grew above the cameras, which were
not intended to be monitored. For example, the straw-
berry # 451 in the view from RGB-2 in Fig. 4.

5. In cooler weather such as in May or September, the
strawberries grow slower and less dense. Both factors
make the trajectories longer than in warmer times.

C. Statistics about OCN images
In the main paper, we provide only the statistics of the

RGB images of GSD because our benchmarking experiments
worked on merely the daytime subset of the RGB images.
Below, Tab. 1 lists the statistics of the OCN images of GSD.

Table 1. Statistical overview of the OCN images of GSD. The
2nd column lists the duration of data collection. The 3rd and 4th

columns note the amounts of all images and the images used in the
benchmarking studies respectively. The last two columns present
the total number of bboxes and trajectories.

Camera Period
Total
img

Anno.
img

Total
bbox

Total
track

OCN-1
Apr 23 -
Nov 9, 2021 4786 2648 73729 560

OCN-2
Apr 23 -
Nov 9, 2021 4785 2688 72158 455

OCN-3
Jun 29 -
Nov 9, 2021 3182 1735 68642 488

OCN-1
Feb 22 -
Oct 3, 2022 5159 3273 70706 618

OCN-2
Feb 22 -
Oct 3, 2022 5162 3337 89201 705

OCN-3
Feb 22 -
Oct 3, 2022 5158 3346 108100 742

D. Implementation of algorithms
We introduce further details about the implementations

of the algorithms and explain the reason of our parameter
settings in this section.

All the object detection and MOT algorithms that we
used for the benchmarking experiments are open-source:
YOLOX-x and Faster R-CNN (model established with the
Detectron2 framework [9]) come with Apache License 2.0.
ByteTrack and OC-SORT use the MIT License. DeepSORT
and StrongSORT use GNU General Public License v3.0.

D.1. Detection models

We trained two object detection models, YOLOX-x [3]
and Faster R-CNN [8], to perform the object detection stage
of the MOT algorithms. Since they had similar performances,
as presented in Appendix E.1, we selected the MOT results
produced only from the YOLOX-x model’s predictions in
the main paper.

This section presents the hyper-parameters for building
up and training the models. Both models are trained with the
complete RGB image dataset, with a “leave-one-camera-out"
train-test-split strategy since the RGB cameras monitored
different plants. The two models shared the same scales of



View at 2021-09-26 21:56
 Brightness = 10.0

View at 2021-08-15 21:16
 Brightness = 19.9

View at 2021-09-26 20:56
 Brightness = 29.9

View at 2021-07-06 22:13
 Brightness = 38.3

View at 2021-11-09 08:29
 Brightness = 49.6
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Figure 1. Example dark images at different brightness levels. The collection time and the average Luma are written on top of each image.
The RGB spectrum is drawn beneath.
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Figure 2. Histogram of the number of GSD images under different
ranges of brightness. The brightness value is calculated in Luma
and averaged over all pixels.
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Figure 3. Histogram of lengths of trajectories in GSD. The track
length is defined as the number of bboxes that are assigned to the
track under the ground-truth annotation.

data augmentation, listed in Tab. 2. The detection results are
filtered with a confidence threshold of 0.1 before going to
the association stages of the MOT algorithms.

Table 2. Data augmentation for training the object detectors. The
first column lists how we augment the data, and the second column
indicates the value ranges.

Data Augmentation Method Scale

Random flip horizontal (probability =) 50%
Random flip vertical (probability =) 50%
Random rotation 0-90 degrees
Random brightness × 0.92-1.12
Random contrast × 0.92-1.12

The YOLOX-x model was initialized with a COCO [7]
pre-trained model. The images are scaled to 2133×1600
and then padded to 2174×1600 to fit the input aspect ratio.
The batch size for training is 4. The model is trained with a
cosine annealing learning rate 3.125e−6 with a warm-up, and
a weight decay of 5e−4. The model is trained by 100 epochs
on an Nvidia Tesla V100 GPU. We select the checkpoint with
the optimal parameters on the validation set to predict the
object detection results for further steps of the experiments.

We trained another Faster R-CNN model using the orig-
inal ResNet-50 from MSRA [5] and Feature Pyramid Net-
work (FPN) [6] as the model backbone. The model is pre-
trained with ImageNet [2].

D.2. MOT algorithms

Before starting the evaluations of the MOT algorithms,
we first conducted grid searches to figure out the optimal
parameters for the strawberry growth-tracking scenario. The
grid search was conducted on the YOLOX-x detections of
the RGB-1 set.

Tab. 3 and 4 present part of our grid-search results. As
is shown, the Intersection over Union (IoU) threshold (“iou-
thre") was the dominant variable of performance of OC-
SORT, both in terms of MOTA and IDF1. One reason could
be the irregular movements of objects, illustrated by the
Figure 4 in the main text. The confidence threshold had
limited effects when using low IoU Threshold.



View from RGB-1, 2021-08-16 12 PM View from OCN-1, 2021-08-16 12 PM

View from RGB-2, 2021-08-16 12 PM View from OCN-2, 2021-08-16 12 PM

View from RGB-3, 2021-08-16 12 PM View from OCN-3, 2021-08-16 12 PM

Figure 4. Example views of the three pairs of cameras. The numbers in the camera name indicate how the cameras are paired. The colored
rectangles are the ground-truth bbox annotations. The trajectory IDs are noted at the top of the bboxes and color-coded. The trajectory IDs
from the OCN and RGB cameras are not consistent, but the mapping of the IDs is manually noted in a separate data sheet.



Table 3. Grid search of iou-thre and conf-thre in OC-SORT. Per-
formances are indicated by MOTA. All experiments have a default
setting of min-hits=3 and max-age=30. The selections of conf-thre
are the indices of rows, and the selections of iou-thre are indicated
by the columns.

IoU Threshold
Confidence
Threshold 0.1 0.3 0.5 0.7 0.9

0.1 64.5 61.4 56.1 45.6 15.7
0.3 64.6 61.4 56.2 45.6 15.7
0.5 64.5 61.4 56.1 45.6 15.7

Table 4. Grid search of iou-thre and conf-thre in OC-SORT with
performances indicated by the IDF1 score under different settings.
All the experiment settings are the same as in Table 2. The selec-
tions of conf-thre and iou-thre are the indices of rows and columns
respectively.

IoU Threshold
Confidence
Threshold 0.1 0.3 0.5 0.7 0.9

0.1 67.3 64.9 60.6 51.2 20.2
0.3 67.4 64.9 60.6 51.2 20.2
0.5 67.3 64.8 60.5 51.2 20.2

DeepSORT uses the maximum cosine distance of fea-
tures (“max-cos-dist") as a gating threshold. Considering
the changing appearance of the GSD objects, we checked
the cosine distance of the features of the same object over
the frame. As depicted by Fig. 5, the features of adjacent
observations of the object have an average cosine distance
of 0.44. Hence, we regard distances larger than the value
are large enough for distinctive objects. Therefore, we select
0.45 as the max-cosine-distance value when implementing
DeepSORT and StrongSORT.

The final decision on the parameters is made by referring
to the grid search results and the default settings of the MOT
algorithms. Details are listed in Tab. 5.

Table 5. Detailed parameter settings of the benchmark experiments
of the MOT algorithms.

conf-
thre

iou-
thre

min-
hit

max-
age

max-
cos-
cost

OC-SORT 0.1 0.1 3 30 -
ByteTrack 0.1 - 3 30 -
Deep-SORT 0.1 0.1 1 30 0.45
Strong-SORT 0.1 0.1 1 30 0.45
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Figure 5. The cosine distances of the normalized features of adja-
cent observations during the complete track of an example straw-
berry. The x-axis shows the temporal sequence of the observations,
and the y-axis indicates the cosine distance from the previous ob-
servation. The features are encoded by the same extractor as we
used for DeepSORT and StrongSORT. The blue line presents the
original cosines distances, and the orange line depicts the effect of
add a gate threshold = 0.45.

E. Detailed model performance
With the “leave-one-camera-out" policy, we validate the

two object detection models in three datasets, i.e. RGB-1/2/3.
As such, the same policy is also applied to the implemen-
tation of the MOT algorithms. The model performances
in the main paper are presented by grouping all the vali-
dation results together. This section provides the specific
performances on each validation set.

E.1. Performance of object detection

In the experiment of object detection, we averaged the
performances of implementing each object detector over
RGB-1/2/3. Tab. 6 lists the specific model performance on
each validation set. The YOLOX-x model performs similarly,
with AP in the range 51 to 54 and AP50 in 86 to 89. The
Faster R-CNN model has an average precision between 53
to 59 (AP50 between 85 to 92). The performances on RGB-2
are relatively worse than the others, but the differences are
limited. We also list the benchmark Average Precision (AP)
of the model on the COCO dataset, as claimed by the model
developers. The results validate that the models perform
similarly on the three validation sets, so it is reasonable
to use the averaged AP for discussion in the main paper.
The comparison in the main paper demonstrates that both
models perform at a comparable level with the corresponding
benchmarks that are stated by the model developers [3, 9].
Hence, in the main paper, we argue that the difficulty level
of object detection on GSD is not significantly higher than
other MOT datasets.



Table 6. Performances of object detectors on RGB-1/2/3 of GSD
respectively. We use AP, AP50 and AP75 as the metrics. The first
column gives the model of the object detector, and the second
column indicates the validation set. The last row of each detector
section, written as “average", is the averaged performance of the
models on the three validation sets, calculated without a weight.
Performance of object detectors on GSD, evaluated by AP, AP50

and AP75. All the values are averaged over the metrics of the three
models that tested on the camera RGB-1/2/3 respectively.

Detector Validation Set AP AP50 AP75

YOLOX-x
RGB-1 53.7 88.3 57.7
RGB-2 51.0 86.0 54.7
RGB-3 62.4 87.5 71.7

Average 55.7 87.3 61.4
Faster R-CNN

RGB-1 58.2 91.5 65.9
RGB-2 53.3 87.9 58.0
RGB-3 56.0 85.8 65.7

Average 55.8 88.4 63.2

YOLOX-x COCO [3] 59.2 86.3 61.9
Faster R-CNN COCO [9] 40.2 60.9 43.8

E.2. Performance of online MOT algorithms

In the main paper, we present the benchmark of the four
MOT algorithms on GSD by the overall metrics from the day-
time subset. This section shows metrics in specific. Below,
Tab. 7 and Tab. 8 present the detailed performance of Byte-
Track and StrongSORT respectively. The performance is
assessed on each camera subset on the full annotated dataset
and on the daytime subset. In general, there are no signifi-
cant performance gaps in the algorithms when using the data
from different cameras. In terms of RGB-1 , which we used
as a test set to decide whether to use a daytime subset or
not, we could notice a slight improvement in the MOT met-
rics, yet the performance on the entire dataset shows limited
differences when using different subsets for evaluation.

E.3. Performance of end-to-end MOT algorithms

Since GSD consists of long series of high-resolution im-
ages, we excluded offline MOT solvers in the scope of bench-
marking experiments. However, we argue that end-to-end is
feasible for the task, but it does not give a better performance
than the other real-time MOT algorithms that we’ve applied
in the paper. We implemented a demo of GMTracker [4]
on the YOLO-X detection of the first few frames of GSD-
2021-CAM-1. However, the performance metrics are not
very positive: without using the quadratic matching function
to represent the 2nd order relationship, the HOTA score is 30
(on the first 1000 frames); and when the quadratic matching

function is activated and its GNN uses the parameters trained
on MOT17, the HOTA score improved to 38 (on the first 750
frames, as shown in Table 2 of the main paper).

We noticed that with the involvement of more frames,
the performance slightly raised, nevertheless, the processing
time becomes exponentially longer with the greater amount
of detections-to-be-matched between frames, as shown in
Fig. 6 – hence we only applied the demo in the first 750
frames of GMT, which has already taken nearly a week to
run with a trained object-matching model.

Noted that our implementation used a model with pre-
trained parameters, due to the fact that the training pro-
cess requires tremendous computation effort. Particularly, a
quadratic affinity matrix as described in [4] requires much
larger memories (e.g. matching 50 objects with another 50
requires 40+GB of memory when training on the MOT17
dataset) than the Hungarian-algorithm-based methods, yet
could not result in a significant performance increase in our
demonstration.
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Matching process of GMTracker on GSD-2021:RGB-1

Figure 6. Reaction time of GMTracker when processing each frame
of the daytime subset of GSD-2021-RGB-1. The x-axis indicates
the frame number, which was re-indexed according to the daytime
subset. The blue line with the y-axis on the left indicates the amount
of detected bbox in each frame. The red line with the y-axis on the
right illustrate the time that the model needed to match the detected
bbox within that frame with those in the previous frame.

Hence, we did not apply the end-to-end MOT on the entire
daytime subset as the other four two-stage MOT algorithms
in the main paper. Nevertheless, we still noted the metrics
down in Table 2 of the main paper, so as to compare the
performance with other algorithms and with the metrics that
GMTracker achieved on other popular MOT datasets.

F. Metrics correlation with data characteristics
In the main paper, we highlight two primary challenges

presented by this dataset: irregular movements and signif-
icant appearance changes exhibited by a majority of the
objects. To further investigate the impact of dataset charac-
teristics, we conducted MOT performance evaluation over



Table 7. Detailed performance of ByteTrack

Camera HOTA MOTA IDF1 AssA AssRe AssPr IDS/Tr FM/Tr

PERFORMANCE ON THE FULL DATASET:
RGB-1 39.77 64.68 40.58 27.30 32.44 66.95 4.4 7.1
RGB-2 39.25 64.65 40.07 27.22 30.82 70.12 5.0 6.8
RGB-3 40.17 80.78 38.09 23.01 25.72 72.64 6.3 7.7
All 39.74 70.29 39.59 25.72 29.49 70.06 5.2 7.2

PERFORMANCE ON THE DAYTIME SUBSET:
RGB-1 40.03 65.53 40.74 27.38 32.43 66.79 4.4 4.6
RGB-2 39.25 64.67 39.95 27.15 30.64 70.37 5.1 5.8
RGB-3 39.93 81.17 37.40 22.63 25.27 72.49 6.3 5.8
All 39.75 70.73 39.38 25.58 29.26 70.01 5.2 5.4

Table 8. Detailed performance of StrongSORT

Camera HOTA MOTA IDF1 AssA AssRe AssPr IDS/Tr FM/Tr

PERFORMANCE ON THE FULL DATASET:
RGB-1 34.11 33.96 32.93 23.98 28.76 60.36 8.2 6.5
RGB-2 35.31 40.84 33.95 25.34 28.61 65.50 9.1 7.0
RGB-3 37.29 66.36 33.41 21.14 24.01 66.73 11.2 7.3
All 35.51 47.45 33.41 23.38 26.98 64.39 9.5 6.9

PERFORMANCE ON THE DAYTIME SUBSET:
RGB-1 35.17 36.86 33.83 24.93 30.16 60.94 7.3 4.3
RGB-2 35.76 41.96 34.64 25.89 29.46 65.01 8.5 5.8
RGB-3 37.58 67.74 33.48 21.18 23.95 67.53 10.7 5.4
All 36.14 49.32 33.98 23.87 27.66 64.74 8.8 5.1
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Figure 7. Correlation analysis among the performance metrics of
DeepSORT and the characteristics of the trajectories. The values in
the grid indicate the exact value of correlation between the MOT
metric from the horizontal axis, which is mentioned on the top of
the figure, and the characteristics indicator from the vertical axis
and listed on the left. The color of each grid is defined by the
correlations, according to the scale shown on the right.

fixed-duration periods. These periods were determined using
a rolling window of 14 days, with a stride of 7 days. We
measured changes in object appearances by calculating the
χ2 distance of each color spectrum at 2 p.m. daily, so as to

limit the daily illumination variance. Differences in object lo-
cations were quantified by averaging the location changes of
the same objects, based on bounding box (bbox) coordinates.
Additionally, we computed the average lengths of trajecto-
ries (TL) within each period, which is defined as the number
of bbox annotations. To assess the correlation between these
indicators and the MOT metrics derived from DeepSORT,
which incorporates both location and appearance features
during data association, we analyzed the results.

The correlation values, depicted in Fig. 7, demonstrate
the extent of influence on the metrics. It is evident that
color changes exert a significant impact on all performance
metrics. Notably, the False Positive (FP) rate of detected-
and-associated bounding boxes is particularly affected, indi-
cating an increased number of missed object matches when
relying on appearance-based association across frames. The
influence of object movement variations, while compara-
tively less pronounced than color changes, is more strongly
correlated with tracklet identification performance. This
observation aligns with the challenges posed by sudden posi-
tion changes resulting from horticulture activity interruptions
and the sparsity of data collection. The correlations between
FP rate and redness, as well as between FP rate and tra-



jectory length (TL), reach values of 0.7, underscoring their
significant contributions to overall performance. Moreover,
longer trajectories exhibit a strong correlation with reduced
Multiple Object Tracking Accuracy (MOTA) and precision,
indicating a substantial negative impact resulting from the
extended duration of the tracking task. Taken together, these
correlations provide evidence of the challenges introduced
by the GSD: i) the appearance change of objects over the
long period and ii) the irregular movements recorded in the
sparse frames.

G. Comparisons of trajectories
Fig. 8 gives a more abstracted comparison of trajectories

in GSD-2021-RGB-1 and MOT20-01, using the ground-truth
annotations of the first and last observation of each track.
The visualization demonstrates that a majority of objects
in both sequences experienced changes in their locations,
with object movements in MOT20-01 generally being more
substantial. This observation, when compared with Figure
4 in the main text, further supports the distinctive pattern of
movement exhibited by objects in the GSD: predominantly
static yet with sudden and irregular changes.

The Euclidean distances and their ratios to the area of
the initial observation (1st bbox) in both sequences exhibit
similar distributions, indicating that the scales of movements
in GSD-2021-RGB-1 and MOT20-01 are comparable.
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Figure 8. Quantitative comparisons of tracks in GSD-2021-RGB-1
and MOT20-01. The 1st plot shows the IoU distribution of the
first and last bbox of each track. The 2nd plot illustrates the IoU
Euclidean distance (ED) of the first and last bbox of each track.
The 3rd plot presents the proportion of the Euclidean distance (ED)
of the first and last bbox of each track to the size of the first bbox.

H. Dataset collection
This section introduces the detailed data collection hard-

ware setup of GSD.

H.1. Data collection setup

The strawberries in the greenhouse were cultivated in
planting baskets, which were hung in parallel lines. Figure 9
gives a side view of the rows. Strawberries grew out from
both sides of the baskets.

The cameras were grouped as three pairs of RGB and
OCN cameras. They were installed on the opposite row from
where the strawberries were growing, as shown in Figure 2
in the main text. As Figure 10 shows, they were fixed on the

A heating pipe

Figure 9. A side view of the planting baskets. The cameras were
attached to the heating pipe at the neighbor’s row. For example, if
the strawberries grew in the left row in the image, cameras would
be installed at the highlighted heating pipe. This particular image
is not taken by the data collection devices, so the distortion in the
image is not related to the strawberry observations.

Figure 10. Camera installation for data collection. The cameras
were fixed to the heating pipe and connected to the electrical grid
with the yellow USB hub.

heating pipe with camera clamps. They were connected to
the local electrical grid with a powered USB hub, so they
could stay awake all the time.
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