
A. Notations
We provide a lookup table for notations used in our work.

Table 6. Description of notations used in our work.

Notation Description

G undirected, flow-driven spatial network (or graph)
V set of nodes in G
ni node i in G
E set of edges in G
eij edge (or link) in G between ni and nj
eij average edge length estimated over edges in G
σ standard deviation of edge length estimated over edges in G
t link prediction target
etij target link (or edge) between nti and ntj
nti target node i affiliated to etij
h number of hops
Gt
h h-hop subgraph extracted around etij

L(Gt
h) line graph representation of Gt

h

V ′ set of nodes in L(Gt
h)

n′i node (or vector embedding) i in L(Gt
h)

E ′ set of edges in L(Gt
h)

e′ij edge (or link) in L(Gt
h) between n′i and n′j

k number of message-passing iterations
si scalar value generated in GAV layer
|si| absolute value of si
ñ′i intermediate node representation (or vector embedding) in GAV layer
n̂′i updated, refined node representation (or vector embedding)
Q query sequence in multi-head attention operation
K key sequence in multi-head attention operation
V value sequence in multi-head attention operation
ŷtij GAV’s predicted probability of existence of etij
ytij ground truth label of existence of etij

EN (nt
i)

set of refined vector embeddings originally created from edges adjacent to nti
Ni matrix consisting of n′i and its direct neighbors

N (ni) set of nodes in the direct neighborhood of ni
N (ni) ∪ ni set of nodes in the direct neighborhood of ni including ni itself
ϕ
(1)
θ , ϕ(2)θ learnable functions in GAV layer
ϕ
(3)
θ learnable function in readout module

dspatial spatial dimension (2 or 3)
dmessage dimension of ñ′i in GAV layer
δ maximum distance threshold utilized in spatial sampling during preprocessing
∥ concatenation operation

LBCE binary cross-entropy loss function



B. More on Interpretability and the Modification of Vector Embeddings
We provide the interested reader with more visualizations regarding the GAV layer’s modification of vector embeddings

(see Section 3.2) on the validation set of the ogbl-vessel benchmark, similar to Fig. 5. These visualizations can also be
interpreted as qualitative results. Fig. 6 depicts subgraph representations Gt

h (h set to one) of 12 positive (real, plausible)
target links, while Fig. 7 depicts subgraph representations of 12 negative (sampled, implausible) target links. Please note that
the respective last rows depict challenging cases, as indicated by GAV’s predicted probabilities ŷtij . Additionally, we would
like to highlight our hypothesis from Section 4.5 that GAV may attempt to assign the two target nodes (red and green) to
sink and source nodes for negative, implausible vessel formations (see Fig. 7), which results in superior representations for
link prediction in flow-driven spatial networks that can be effortlessly classified in our physically plausible readout module.
Please note that we conduct an additional experiment modifying a toy example in Sec. D to further facilitate interpretability.

Figure 6. Visualization of the effect of our GAV layer on vector embeddings. We visualize subgraph representations Gt
h of 12 positive

target links (ytij = 1) together with the GAV layer’s predicted scalar values si ∈ (−1, 1). The scalar values si used to update vector
embeddings in L(Gt

h) have been projected to their corresponding edges in Gt
h (see Fig. 2) to provide an interpretable visualization. The

directionality of edges (indicated by arrows) already incorporates potential shifts in the direction of vector embeddings enforced by our
GAV layer. We additionally report the angle ∠ between the vector embeddings aggregated around the two target nodes (see Section 3.4)
and the predicted probability of link existence ŷtij .



Figure 7. Visualization of the effect of our GAV layer on vector embeddings. We visualize subgraph representations Gt
h of 12 negative

target links (ytij = 0) together with the GAV layer’s predicted scalar values si ∈ (−1, 1). The scalar values si used to update vector
embeddings in L(Gt

h) have been projected to their corresponding edges in Gt
h (see Fig. 2) to provide an interpretable visualization. The

directionality of edges (indicated by arrows) already incorporates potential shifts in the direction of vector embeddings enforced by our
GAV layer. We additionally report the angle ∠ between the vector embeddings aggregated around the two target nodes (see Section 3.4)
and the predicted probability of link existence ŷtij .

C. Initialization of Vector Embeddings
The initialization of the direction of vector embeddings represents an important implementation detail and is based on a

straightforward intuition. To be precise, we initialize vector embeddings to point away from the target link etij , i.e., towards
nodes with a node degree of one (leaf nodes). The vector embedding representative of the target link etij is set to point from
nti to ntj . An exemplary initialization of vector embeddings for a 1-hop subgraph can be found in Fig. 2.

D. GAV and Structural Properties
This section elaborates on how GAV’s predictions rely heavily on structural properties, such as bifurcation angles, which

reflect functional properties of the underlying physical system [10]. To this end, we prepare and modify a synthetic mock
example in Fig. 8. Specifically, we vary the bifurcation angle ψb spanned between two edges connected to nti (red) to generate
morphological implausible and plausible blood vessel formations (see Fig. 8).



Figure 8. Morphological implausible (left) and plausible (middle and right) blood vessel formations formed around the target link (or-
ange) with varying bifurcation angles ψb. GAV correctly identifies morphological plausible blood vessel formations that fulfill relevant
hemodynamic functional properties [10].

As expected, GAV differentiates between plausible and implausible blood vessel formations formed around the target link.
GAV assigns a high probability of target link existence ŷtij to plausible and a low probability of target link existence to im-
plausible formations. Please note that Fig. 8 additionally maps the potentially modified directionality of vector embeddings
onto their corresponding edges, similar to Fig. 6 and Fig. 7. One can observe the shift in the directionality of vector embed-
dings created from edges adjacent to nodes with high bifurcation angles ψb, transforming the target nodes (red and green) to
sink and source nodes for morphological implausible blood vessel formations (see Fig. 8, left).

E. Visualization of Datasets
In Fig. 9, we graphically visualize two flow-driven spatial networks representative of murine whole-brain vessel graphs

and road networks.

Figure 9. Visualization of a whole-brain vessel graph and a road network. The depicted flow-driven spatial networks correspond to the raw
cd1-tc-vessel and luxembourg-road datasets.



F. More Ablations on the GAV Layer
Since the GAV layer relies on a set of specific design choices, we conduct additional ablation studies determining their

influence on the link prediction performance on the validation set of the ogbl-vessel benchmark. To this end, we experiment
with different versions of the GAV layer. First, we deactivate the multi-head attention operation; second, we exclude the
residual connection; and third, we exchange the leaky ReLU non-linearity in the GAV layer with the ReLU non-linearity. We
report our findings in Table 7.

Table 7. Ablations on the GAV layer’s main design choices.

Attention Residual Connection Leaky ReLU AUC ↑ Hits@100 ↑ Hits@50 ↑ Hits@20 ↑

✓ ✓ ✓ 98.39 34.46 26.30 19.81
✗ ✓ ✓ 97.48 15.56 9.18 5.68
✓ ✗ ✓ 98.34 34.90 27.61 19.28
✓ ✓ ✗ 98.34 34.16 26.47 17.31

Deactivating the multi-head attention operation (second row) results in a drastic AUC decrease of 0.91, indicating the im-
portance of neighborhood awareness when modifying vector embeddings via our proposed GAV layer. Excluding the GAV
layer’s residual connection (third row) and using ReLU instead of Leaky ReLU non-linearities (fourth row) leads to a slight
reduction in AUC of 0.05, respectively. Based on our reported standard deviation value of ± 0.02 (see Table 2), we argue
that this performance decrease is indeed significant.

G. Evaluation Metrics
To compare GAV to existing baseline algorithms, we report quantitative results based on the area under the receiver op-

erating characteristic curve (AUC), following the obgl-vessel benchmark. The AUC metric indicates the performance of
a classifier by plotting the true positive rate against the false positive rate at all possible classification thresholds. There-
fore, AUC provides an aggregate performance measure indicating the classifier’s ability to distinguish between positive and
negative links.

We introduce the evaluation metric Hits@k as an additional, stricter performance measure. Hits@k compares the clas-
sifier’s prediction of every single positive link to a randomly sampled set of 100,000 negative links, resulting in a ranking
among 100,001 links with respect to the probability of link existence. Based on this ranking, Hits@k indicates the ratio of
positive links ranked at the k-th place and above. In the context of this work, we evaluate Hits@k at k = 100, k = 50, and
k = 20, inspired by other Open Graph Benchmark [4] link prediction benchmarks.

H. Configuration of Our Secondary Baseline
We incorporate the EdgeConv message-passing layer [16] into the SEAL framework [17, 19], which has been shown to

deliver results on par with or superior to the state-of-the-art on multiple link prediction benchmarks, to introduce a strong,
secondary baseline (SEAL+EdgeConv) for link prediction in spatial networks. To be precise, we incorporate EdgeConv in
SEAL’s DGCNN [18]. EdgeConv’s update function can be observed in Table 10. Here, ϕθ represents a two-layer MLP
with an input dimension of 64, a hidden dimension of 32, and an output dimension of 32. Our modified DGCNN employs
in total three EdgeConv layers, with the only difference being that the input dimension of the first EdgeConv layer’s MLP
corresponds to 70 and the output dimension of the third EdgeConv layer’s MLP to 1. Our EdgeConv version utilizes a
mean feature aggregation scheme. We set the number of in- and output channels of the DGCNN readout operation’s two 1D
convolutions to 1 & 16 and 16 & 32, respectively. The kernel sizes and strides of the two 1D convolutions correspond to
65 & 65 and 5 & 1. We set the input, hidden, and output dimensions of the DGCNN readout operation’s MLP to 38, 128,
and 1. The global sort pooling layer’s parameter k is set to 10. All hyperparameters were tuned on the validation set of the
ogbl-vessel benchmark.

I. GAV’s Performance on Non-Flow-Based Link Prediction Benchmarks
To additionally confirm that GAV is specialized for link prediction in flow-driven spatial networks, we conduct an ex-

periment on the ogbl-collab benchmark [4], which represents a collaboration network given by an undirected graph where
nodes are associated with authors while edges indicate collaborations between them. Node features are comprised of 128-
dimensional vectors representative of an author’s scientific work (averaged word embeddings reflecting the content of sci-
entific papers). Based on the collaboration network, the task is to predict future collaborations between authors. To adjust



GAV to the task of the ogbl-collab benchmark, we model vector embeddings representative of edges in the collaboration
network as the difference between 128-dimensional feature vectors of two nodes incident to an edge. We report our findings
in Table 8.

Table 8. Comparison between GAV and SEAL on ogbl-collab and ogbl-vessel. Please note that the increase in GAV’s trainable parameters
in the experiment on ogbl-collab is mostly due to the increased number of node features (128 vs. 3).

Dataset Model # Params ↓ Eval. Metric ↑ (%)

ogbl-collab SEAL [19] 501,570 64.72 Hits@50
GAV (ours) 44,194 16.72 Hits@50

ogbl-vessel SEAL [19] 172,610 80.50 AUC
GAV (ours) 8,194 98.38 AUC

As expected, GAV, relying on the idea of modeling simplified physical flow in flow-driven spatial networks, does not deliver
competitive results on the ogbl-collab benchmark. This is because GAV’s strong inductive biases are tailored to link predic-
tion in flow-driven spatial networks and are, therefore, too restrictive for non-flow-based networks, such as ogbl-collab. This
repeatedly demonstrates GAV’s ability to intuitively model the underlying physical process in flow-driven spatial networks.

To adapt GAV to non-flow-based networks more appropriately, we encourage future work to explore the use of pseudo-
spatial positions embedded in nodes of non-flow-based networks rather than its actual node features for the sake of creating
vector embeddings. Pseudo-spatial position could, e.g., be determined based on the Fruchterman-Reingold force-directed
algorithm [6].

J. On Translation and Rotation Invariance

Figure 10. Exemplary Gt
h extracted from the

ogbl-vessel benchmark around a negative and
positive link used for experiments in Table 9.

In this section, we briefly investigate GAV’s behavior under rotations
and translations of the h-hop enclosing subgraph Gt

h. Specifically, we aim
to investigate whether rotation and translation of Gt

h result in similar predic-
tions. Since GAV encodes edges as vector embeddings spanned between
two nodes (see Section 3.1), translation invariance is explicitly ensured.
However, even though rotation preserves the length and relative angles of
edges, rotation invariance is not explicitly ensured. This is, e.g., because
queries and keys forwarded to the GAV layer’s attention operation are not
explicitly rotation equi- or invariant, which is one of the key requirements
for rotation invariant attention weights and hence potential rotation invariant
predictions [2]. An empirical experiment rotating exemplary input graphs
around all three axes, however, demonstrates that GAV’s predictions are rel-
atively robust to rotation, indicating to some degree implicit, learned rotation invariance (see Table 9). We encourage future
work to further explore the necessity of explicitly encoded translation and rotation invariance in the context of link prediction
for flow-driven spatial networks.

Table 9. Experiment on rotation invariance of predictions. We rotate three exemplary subgraphs Gt
h around all three axes with a step size

of 1◦ to investigate GAV’s behavior under rotation. We report the standard deviation of predicted target link probability ŷtij over all 360
predictions.

Subgraph Gt
h σŷt

ij
(x-axis) σŷt

ij
(y-axis) σŷt

ij
(z-axis)

Fig. 8, right 5.15·e−5 1.86·e−6 1.34·e−5

Fig. 10, left 9.63·e−2 1.12·e−3 7.64·e−3

Fig. 10, right 1.85·e−3 1.08·e−3 3.37·e−4

K. Commonalities and Differences between SEAL and GAV
Since the influential SEAL link prediction framework [17, 19] represents one of the most prominent works on learned,

GNN-based link prediction algorithms, we would like to clearly state the commonalities and differences between SEAL and
our proposed link prediction algorithm tailored to flow-driven spatial networks, GAV. Although GAV utilizes some concepts
introduced by SEAL (subgraph extraction/classification & labeling trick), which are provably used in most competitive



approaches and can, therefore, be seen as common practices, we, for the first time, introduce the principle of physical flow to
link prediction. To this end, we propose not only a novel flow-inspired, parameter-efficient message-passing layer updating
vector embeddings but also a physically plausible readout module facilitating interpretability. Our contributions result in an
increase of more than 22% in AUC compared to SEAL on ogbl-vessel.

L. Message-Passing Update Functions
We provide a concise overview of message-passing layers featured in our work and their respective high-level, final node

update functions in Table 10. Here, di stands for the node degree of ni, αij for the learned attention coefficient between ni
and nj , and ϕθ for an arbitrary learnable function. We would like to highlight the simplicity of the GAV layer’s final update
function.

Table 10. Message-passing update functions.

Message-Passing Layer Update Function

GAV layer n̂i = si · ni

EdgeConv [16] n̂i =
1

|N (ni)|
∑

nj∈N (ni)

ϕθ(ni ∥ nj − ni)

GAT layer [14] n̂i = αii · ϕθ(ni) +
∑

nj∈N (ni)

αij · ϕθ(nj)

SAGE layer [3] n̂i = ϕ
(1)
θ (ni) + ϕ

(2)
θ (

1

|N (ni)|
∑

nj∈N (ni)

nj)

GCN layer [5] n̂i = ϕθ(
∑

nj∈N (ni)∪ni

1√
di · dj

nj)

M. Medical Relevance of the Link Prediction Task for Whole-Brain Vessel Graphs
Since GAV has been developed around the ogbl-vessel benchmark, we would like to provide more details on the medical

relevance and the application of link prediction algorithms for whole-brain vessel graphs. As already mentioned in Section
1, vascular network representations of the brain originate from a multi-stage, imperfect process, typically consisting of a
segmentation stage followed by a graph extraction stage (skeletonization and pruning). Detailed pipelines for whole-brain
vessel graph generation can be found in the literature [1, 7, 8, 15]. Each stage of the graph generation pipeline introduces
noise and artifacts to the extracted whole-brain vessel graphs. The initial segmentation stage [13], e.g., often results in
under- or over-connected vessel segmentation masks, which in turn result in equally under- or over-connected whole-brain
vessel graphs. This is mostly due to the shortage of annotated training data (especially in the 3D domain), which is required
for accurate vessel segmentation via supervised state-of-the-art deep-learning-based segmentation techniques. Under-/over-
connectivity, however, limits the application of whole-brain vessel graphs for subsequent medically relevant downstream
tasks, such as the diagnosis, treatment, and analysis of neurovascular brain disorders (e.g., aneurysms or strokes). This is
because these downstream tasks require flawlessly connected whole-brain vessel graphs free of artifacts to obtain a deeper
understanding of neurovascular brain disorders by, e.g., accurately recognizing anomalies in blood flow patterns via blood
flow modeling [9]. To overcome the obstacle of under-/over-connectivity in whole-brain vessel graphs and, therefore, to
enable researchers to obtain a more accurate and advanced understanding of neurovascular brain disorder, one can either
optimize whole-brain vessel graph generation pipelines [11, 12] or utilize the task of link prediction, which we extensively
investigate in this work.
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