A. Contributions

Our contributions are summarized as follows:

New task. We opened up a new challenging task, Sketch-
based Video Object Localization (SVOL). We also identified
several challenges that the SVOL task setting brings.

New dataset. We presented a new SVOL dataset curated
from the video dataset (ImageNet-VID [60]) and three sketch
datasets with different styles (Sketchy [63], TU-Berlin [20],
QuickDraw [33]) and provide a benchmark with comparison
against the frame-level baselines and several variants.

Strong baseline. We proposed a novel framework named
SVANet, equipped with SVOL-tailored designs such as
Cross-modal Transformer and per-frame set matching, that
serves as a strong baseline on the benchmark: SVANet
improves mloU by 29.4%, 17.7%, 16.8% over the strong
counterpart, Sketch-DETR [59], using Sketchy, TU-Berlin,
QuickDraw sketch dataset, respectively.

Extensive experiments. We thoroughly investigated the ef-
fects of model components with comprehensive ablative stud-
ies in various aspects. Last but not least, we demonstrated
the strong generalizability of SVANet on unseen datasets
and novel categories, which makes sketch as query highly
practical in real-world scenarios.

B. Related Work

Our work builds on previous work in several areas, in-
cluding sketch-based applications, query-based localization,
and Transformer architecture.

B.1. Sketch-based Applications

Our work builds on the idea of using sketches as a way
to query visual data. Sketch is a universal communication
tool that is not bound by age, race, language, or national
boundaries. Recently, sketch-based applications have grown
at an unprecedented rate due to the widespread use of touch-
screen devices such as smartphones and tablets that enable
acquiring sketch data much easier than ever. Here are some
examples of various applications using sketch ':

Image retrieval: a user sketches an object or scene and the
system retrieves similar image from a database [3, 18,61,82].
Image synthesis: a user sketches an image and the system
generates a photorealistic version of the image [10,31,74];
Image editing: a user sketches desired changes to an image,
and the system makes the changes automatically [52, 80].
Robot interface: a user sketches a task for a robot to perform,
such as picking up an object and placing it in a specific
location [5,62].

3D modeling: a user sketches a 3D object and the system
generates a 3D model of the object [49,71].

IFor a more detailed list of sketch-based applications, we recommend
referring to [78].

Augmented reality: a user sketches an object, and the sys-
tem overlays a 3D model of the object in the real-world
environment [32, 36].

Additionally, sketch is particularly effective at represent-
ing detailed features of an object like its shape, pattern, and
pose. This ability to convey such fine-grained information
has made sketches a popular tool in a variety of studies, in-
cluding image [83], scene [44], and video [79] retrieval. For
example, in fine-grained image retrieval, sketch are used as
queries to retrieve specific objects within images, such as
a specific breed of dog or type of car [64,66]. This allows
users to search for images with specific visual characteristics,
such as the shape of a dog’s ears or a car’s grille, so that
objects of the same category can be differentiated.

In the SVOL problem, while sketches have the capabil-
ity to provide fine-grained information, we opt to focus on
category-level object localization, i.e., localization is carried
out in a shape- and pose-agnostic manner within the same
category. This is because it is not natural to match a static
sketch that has a specific shape and pose with objects in a
video, whose shape and pose dynamically change over time.
Additionally, by focusing on category-level localization, we
can take advantage of the abstract nature of sketches. We can
identify the location of objects in a video by sketching only
some key features of the object, such as the headlights and
grille of a car.

B.2. Query-based Localization Tasks

SVOL is related to the literature on object detection and
tracking in videos, with added constraint of using a sketch
as the query. Query-based object localization is similar to
object detection [43,46,57,58] (or video object detection [12,

,28,72,77,86]) in that they both aim to locate the bounding
boxes of objects in an image (or a video). However, query-
based localization is grounded on the given query, rather
than pre-defined object classes. Query-based localization
tasks have been studied using various query types in diverse
dimensions.

Query. Image queries can be localized based on appearance
similarity, allowing themselves to be easily transferred to
other objects with just a few image samples. This desirable
property opens up a new avenue for research on one/few-
shot localization [22,29, 50, 70]. However, image queries are
hard to acquire in some privacy or security-related situations,
making their usage in some applications difficult. Language
queries, on the other hand, are highly useful given that we
just need to describe the objects of interest in natural lan-
guage. However, its universality is limited since the assumed
language (English) may not be familiar to some people (non-
native English speakers). As such, when the language is
re-targeted, the neural network may require extra learning or
translation before providing the query. Sketch queries differ
from image queries in that they lack rich information such as



color, texture, and background information; most free-hand
sketches are composed solely of monochromatic lines, with
no texture and context. In addition, since the sketches are
drawn by envisioning abstract objects, even the same ob-
ject may be drawn differently by a different person. These
characteristics make sketch-based localization challenging.
Nevertheless, we argue that this line of research is valuable
since it offers the highest degree of freedom among the three
query types and can transcend the language barrier (i.e., the
sketch of ‘cat’ can be understood whether or not you are a
native English speaker). Our work focuses on the emerging
role of sketch in the context of query-based localization.

Dimension. Temporal localization aims to identify the tem-
poral span (1D) in which the query object appears in the
video. Spatial localization attempts to locate all object in-
stances that match the query object within a still image (2D).
Spatio-temporal localization seeks to locate all object in-
stances that match the query object in every frame of video
(3D). Our work belongs to the spatio-temporal category.

Task. The challenging and open-ended nature of the query-
based localization problem lends itself to a variety of tasks:
image-based localization in natural images [2, 14,45,47]
and videos [11, 13,39,40] (a.k.a., visual object tracking);
language-based localization in natural images [15, 16, 24,
,35,81] (a.k.a., visual grounding or referring expression
comprehension) and videos [1,6,21,27,38,65,76,85] (a.k.a.,
video grounding or natural language video localization); and
sketch object localization in natural images [59, 67]. The
most relevant tasks to ours are video grounding [21, 38,65,
] and sketch object localization in images [59,67].

Comparison to previous works. In the realm of query-
based localization research, various query types and domains
have been explored, such as image, language, and video.
However, one noticeable gap in the existing literature per-
tains to the absence of studies focused on sketch queries in
the video domain. We seek to address this particular gap
in knowledge. To address this research void, we propose a
novel task “Sketch-based Video Object Localization”. This
task is designed to facilitate the precise localization of spatio-
temporal object boxes within video content, with the query
input provided in the form of a sketch. This novel approach
bridges the gap between sketch-based queries and video ob-
ject localization, opening up new avenues for exploration
and advancement in the field.

B.3. Sketch-based Image Object Localization

There are few methods for image object localization using
sketch queries [59, 67], and we are the first to propose a
sketch-based video object localization approach. We adopt
Cross-modal Attention [67] and Sketch-DETR [59] as the
image-level baseline in our SVOL benchmark.

Tripathi et al., Cross-modal Attention [67] generates ob-
ject proposals that match the query sketch in an image. This

mechanism operates above the off-the-shelf object detection
framework, Faster R-CNN [58], in which the key component
is region proposal network (RPN). Tripathi ef al. modifies
the RPN structure to integrate the sketch information in or-
der to create object proposals that are relevant to the query
sketch. In more detail, feature vectors of different regions in
the image feature map are scored using the global sketch rep-
resentation to determine compatibility. The attention feature
is then calculated by multiplying these compatibility scores
with image feature maps. These attention feature maps are
concatenated with the original feature maps and projected
to a lower-dimensional space, which is then input to RPN to
yield relevant object proposals. The pooled object proposals
are scored using a sketch feature vector to localize the object
of interest.

Riba et al., Sketch-DETR [59] is built on the DETR [8]
architecture. Given a natural image and a query sketch,
Sketch-DETR [59] transforms each input with a separate
CNN backbone, and generates feature maps for each input
modality. They are then fused via concatenation. Specifi-
cally, the sketch is inflated by the resolution of the image
feature map then projected using a 1x1 convolution oper-
ation. The obtained feature map are flattened before being
fed into the Transformer encoder-decoder. The final bound-
ing boxes and their respective score are predicted through a
shared feed-forward network (FFN).

B.4. Vision and Multimodal Transformers

Transformer [69] is a universal sequence processor with
an attention-based architecture that is originally designed
for machine translation. The primary components of Trans-
former are self-attention that captures long-range interac-
tions within a single context and cross-attention that consid-
ers token correspondences between two sequences.

Vision Transformers. Beyond natural language process-
ing [7, 17,54, 55], Transformers have rapidly become the
de facto standard in a variety of computer vision applica-
tions: image recognition [19], object detection [&], panoptic
segmentation [73], human object interaction [34], action
recognition [37,75], and object tracking [1 |]. Among these,
it is worth noting that Detection Transformer (DETR) [8]
has made a significant breakthrough in the field of object
detection by successfully adopting Transformer design and
bipartite matching algorithm. By design, DETR eliminates
the need for heuristics (e.g., non-maximum suppression)
in the detection pipeline while leveraging the capability of
global relation modeling. Inspired by the recent successes
of Transformers, particularly DETR, we view the SVOL
task as a set prediction problem and build our model on the
Transformer architecture. Furthermore, since videos are a
sequence of frames, the Transformer is well-suited to model
temporal information of videos.



Multimodal Transformers. Transformers have shown to
be particularly effective in multimodal processing due to
their ability to selectively attend to relevant information
from multiple modalities (e.g., text, image, and audio). This
has been demonstrated in various tasks, including image
captioning [53], visual question answering [9], natural lan-
guage video grounding [76], text-to-image synthesis [56],
and text-to-speech [41]. Recent studies such as CLIP [53]
and DALL-E [56] highlighted the potential of pre-training
Transformer-based models on a vast amount of image-text
pairs using a contrastive loss. This provides a strong start-
ing point when fine-tuning on downstream tasks, thereby
allowing the model to generalize well unseen datasets. Fur-
thermore, Transformers have shown to transfer well across
tasks, making them a versatile model for various multimodal
processing tasks [42,48]. These properties of Transformer
make itself a strong candidate for the SVOL task, where the
intricate relationship between the query sketch and video
objects must be modeled to bridge the gap between natural
video and sketches with various styles.

C. Preliminary: Transformer

We build our Cross-modal Transformer (CMT) on top of
Transformer design 2, which: (i) densely relates every pair
of elements in the input sequence; (ii) captures long-range
context with minimal inductive bias (compared to CNNs or
RNNS); (iii) effectively models interaction between multi-
modal (cross-domain) sequences. These desirable properties
of Transformer makes itself well-suited for the CMT design.

The common practice is to use attention mechanism with
residual connection, dropout, and layer normalization. At-
tention in the general QKV form is a popular yet strong
mechanism for neural systems. Given that attention opera-
tions are key building blocks of CMT, we first briefly discuss
their general form.

C.1. QKYV Attention

Given input sequences q € R *P k € RL2*P and v €
RL2*D we project them into separate embedding spaces.
We call the embedded representations as query (Q), key (K),
and value (V).

Q = (q +pos,)Wg, €]
K = (k + pos;) Wi, 2)
V=vW,, 3)

where Wq, Wy, W, € RP*DPr are learnable weights.
Since the Transformer is inherently permutation-invariant

2We leave an original paper as a reference [69] for further details of Trans-
former building blocks.

w.r.t input sequence, we add positional encoding pos, €
RL1XD and pos,, € RL2*P (fixed absolute encoding to rep-
resent positions using sine and cosine functions of different
frequencies) to embedded sequences.

The attention weights A;; are computed by comparing
two elements of the sequence (dot products) to their respec-
tive query Q; and key K; representations, normalized by

Dy,.
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Finally, we calculate a weighted sum over all value repre-
sentation V.

A = softmax (

Att(q, k,v) = AV. (5)

We call this operation as Self-Attention for the special
case where q, k, and v are all the same.

C.2. Multi-Head Attention

Multi-Head Attention (MHA) allows the model to jointly
attend to information from different representation subspaces
at different positions. It is a simple extension of Attention
in which several Attentions heads are executed in parallel
followed by a projection of their concatenated outputs. To
maintain the computed value and the number of parame-
ters constant when changing the number of heads k, Dy, is
typically set to D /k.

MHA(q, k,v) = ©
[Attl(% k7 V)7 tt Attk(qa k7 V), ]WMHAu
where [;] denotes concatenation on the channel axis and
Wana € RFPrxD g Jearnable weight.

D. SVOL Dataset & Analysis

The SVOL dataset is built on multiple datasets [20,33,60,
]. We consider only the categories that intersects between
the video dataset [60] and the sketch datasets [20, 33, 63].

D.1. SVOL Dataset

ImageNet-VID [60] is built for video object detection task. It
contains 5,354 snippets (train/val/test split is 3,852/555/937)
that are annotated with 30 object categories, including ve-
hicles (e.g., airplane, bus, efc.) and animals (e.g., bird, dog,
etc.). Each object instance is annotated in the form of {video
name, frame number, class label, instance id, bounding box}.
We use a validation set for evaluation since test annotations
are not publicly available.

Sketchy [63] is a large-scale collection of sketch-photo
pairs that has 75,471 sketches belonging to 125 categories.
Drawers are not allowed to directly trace objects; rather,
sketches are drawn after seeing specific photographic ob-
jects. This forces the drawers to sketch from memory in the
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Figure 1. Video dataset [60] class distribution when objects of the same category are (a) counted as a whole (i.e., agnostic to instance ID)
or (b) counted individually (i.e., sensitive to instance ID). The x-axis denotes the category and y-axis denotes the frequency.
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Figure 2. Sketch dataset class distribution. (a) Sketchy [63], (b) TU-Berlin [20], and (c¢) QuickDraw [33]. The x-axis denotes the class and

y-axis denotes the frequency.

same way that a user of sketch-based image retrieval sys-
tems [18,61, 82] would draw from a mental image of the
desired object. 23 categories overlap with ImageNet-VID:
airplane, bear, bicycle, car, cat, cow, dog, elephant, horse,
lion, lizard, motorcycle, rabbit, sheep, snake, squirrel, tiger,
turtle, zebra.

TU-Berlin [20] is a crowd-sourced sketch dataset composed
of 20,000 unique sketches with 250 categories. The sketches
are uniformly distributed over 250 object categories, which
exhaustively cover the vast majority of objects seen in daily
life. The median drawing time for each sketch is 86 seconds.
Due to the low quality of some sketches, humans correctly
identify just 73% of these hand-drawings. 21 categories over-
lap with ImageNet-VID: airplane, bear, bicycle, bus, car, cat,
cow, dog, elephant, horse, lion, monkey, motorcycle, panda,
rabbit, sheep, snake, squirrel, tiger, train, zebra.

QuickDraw [33] is a huge collection of 50 million sketches
organized into 345 categories. Over 15 million players have
contributed millions of sketches playing “Quick, Draw!”

game °, where a neural network tries to guess the sketches.
The players are asked to draw a sketch of a given category in
20 seconds while the computer attempts to classify them. The
way the sketches are collected results in a high degree of va-
riety in the dataset, although most sketches are of low quality
due to time limit. 24 categories overlap with ImageNet-VID.

Video N Sketch

Categories

ImageNet-VID N Sketchy
(19 classes)

airplane, bear, bicycle, car, cat,

cow, dog, elephant, horse, lion,
lizard, motorcycle, rabbit, sheep,
snake, squirrel, tiger, turtle, zebra

ImageNet-VID N TU-Berlin
(21 classes)

airplane, bear, bicycle, bus, car,
cat, cow, dog, elephant, horse, lion,
monkey, motorcycle, panda, rabbit,
sheep, snake, squirrel, tiger, train,
zebra

ImageNet-VID N QuickDraw
(24 classes)

airplane, bear, bicycle, bird, bus,
car, cat, cow, dog, elephant, horse,
lion, monkey, motorcycle, panda,
rabbit, sheep, snake, squirrel, tiger,
train, turtle, whale, zebra

3https://quickdraw.withgoogle.com/
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D.2. SVOL Data Analysis

D.2.1 Frame Length Distribution

We use the video dataset from the ImageNet-VID
dataset [60]. The train split has 3,862 videos that are fully
annotated with the 30 object categories, yielding 866,870
bounding boxes for 1,122,397 frames. In validation split,
555 videos are fully annotated with the 30 object categories,
resulting in 135,949 bounding box annotations for 176,126
frames. We summarize the statistics for the frame length
distribution of ImageNet-VID dataset below.

Dataset | Split | min max  mean median
Train 6 5492 290.6 180
ImageNet-VID } Val } 11 2898 3173 232

D.2.2 Class Histogram

Video dataset. We show the class histogram of ImageNet-
VID [60] dataset in Fig. 1. Here, ID-specific refers to taking
into account the identity (ID) of an object instance when
counting the number, whereas ID-agnostic refers to not tak-
ing it into account. In ID-agnostic, the number is counted
only once even if multiple object instances belonging to the
same category appear in a video. For example, in the case



of “car”, the number is around 500 without considering the
track-id, but exceeds 1,400 with considering the track-id.
This indicates that there are many scenes in the video in
which multiple “car” object instances appear concurrently.
We count only the object categories that are common in both
the video and sketch datasets. The statistics for the class dis-
tribution of the SVOL video dataset are summarized below.

Dataset Track-ID Split min  max mean median
id-specific Train 67 1246 276.8 194
ImageNet-VID Va.I 9 229 477 29
id-agnostic Train 56 458 151.8 118
Val 4 64 21.8 19

Sketch dataset. We show the class histograms of
Sketchy [63] and TU-Berlin [20] datasets in Fig. 2. The
QuickDraw [33] dataset has 1,000 sketch images per class
are uniformly distributed and all train/val splits are 800/200.
The number of sketches per class is relatively evenly dis-
tributed in the Sketchy dataset, however there is an imbal-
ance between classes in the TU-Berlin dataset. The following
table summarizes the statistics for the class distribution of
SVOL sketch datasets.

Dataset Split min max mean median
rewny | Traim | 486 594 5395 535
Y| val 122 149 1354 134
| Tran 64 458 1507 116
TU-Berlin |y 16 64 24.7 19
. Train | 800 800 800 800
QuickDraw | =y, ) 200 200 200 200

Number of object instances. Fig. 3 shows the distribution
of the number of object instances per frame in the SVOL
video dataset. The average object instances per video is
1.4363 in the train split and 1.4502 in the validation split.

D.3. Data Curation

The SVOL dataset is made up of a combination of video
dataset and sketch datasets. To ensure that the SVOL evalua-
tion set remain unseen in the training phase, we split videos
and sketches into training and evaluation sets, respectively,
and then construct a training set of SVOL with a combination
of both training sets, and an evaluation set of SVOL with
a combination of both evaluation sets. This guarantees the
models to be evaluated on video-sketch pairs that are totally
unseen throughout the training phase. While this setting is
most closest to the actual environment in which the SVOL
system operates, it requires the model to be generalized to
both videos and sketches.

Formally, let {Vi., Ve, } train/eval video datasets,
{Str,Sev} trainfeval sketch datasets, and {Cy,Cg}
video/sketch category sets. For all categories that are com-
mon for video and sketch datasets, i.e., Vc € Cy, N Cg, we
construct SVOL train set by pairing V- and S;,., and SVOL
eval set with V,,, and S,,. Only video and sketch are paired
when they have the same class label. The number of pairs

SVANet (Ours)

Sketch-DETR

(a) S—=T (b) S—=Q (c) SC—=USC (w/ S)
Figure 5. Feature distribution of SVANet vs. Sketch-DETR [59]
when transfer is performed for the cases of (a) Sketchy—TU-Berlin,
(b) Sketchy—QuickDraw, and (c) Seen—Unseen Categories with
the Sketchy dataset. Each data point represents the last hidden state
of the CMT, and the color indicates the category it belongs to. We
plot samples of 5 random categories with a confidence score higher
than 0.9.

generated for each video-sketch datasets are summarized in
the table below (§1§c4 shows the er-categor‘yI distribution).

Split VID VID-TU-Berlin D-QuickDraw
Train 1,545,801 215,040 2,958,400
Eval 57,660 7,952 10,6400

In practice, we only use videos that contain at least one
query sketch object within 32 frames uniformly sampled
from the video, and bounding box annotations that corre-
spond to the sketch object are regarded as the ground truths
for that pairing. A video can be paired more than once since
it can contain multiple objects. We note that the class label
is only a means for pairing and is not considered in actual
training.

E. Additional Qualitative Results

Feature distribution in transfer evaluation. In Fig. 5, we
perform transfer evaluation and visualize the feature distribu-
tion of SVANet and that of Sketch-DETR using t-SNE [68].
Here, (a) and (b) depict the results in dataset-level trans-
fer, whereas (c) represents the result of category-level trans-
fer. In other words, for (a) and (b), models trained on the
Sketchy dataset (TU-Berlin dataset for (b)) were employed
to map the feature distributions of samples from the TU-
Berlin dataset (QuickDraw dataset for (b)). On the other
hand, for (c), models trained on certain categories were uti-
lized to visualize the feature distributions of samples from
previously unseen categories. Compared to Sketch-DETR,
SVANet appears to be nicely clustered when transferred to
unseen datasets, which implies that SVANet effectively cap-
tures class-discriminative representations. When transferred
to unseen categories, SVANet embeds the same category into
a similar subspace, demonstrating that learned sketch-video
mapping can generalize well. Moreover, SVANet shows
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Figure 6. Success cases of SVANet on QuickDraw dataset. Green and blue boxes represent ground truths and predictions, respectively.

denser distribution than Sketch-DETR, i.e., only a few data
points reach the threshold confidence 0.9 in Sketch-DETR,
indicating that our SVANet produces more reliable predic-
tions.

SVOL results: success cases. Fig. 6 shows success cases
of SVANet. Our system successfully recognizes the objects
that correspond to the query sketch and accurately localizes
their bounding boxes in a variety of challenging conditions:
(a) various objects appears in a video; (b) multiple object
instances with different pose and shape appear in a video;
(c) only sketch of a part (face) of object is given; (d) the
target objects have different colors; (e) the target objects are
occluded by other objects; (f) bad illumination condition.

SVOL results: failure cases. Fig. 7 shows failure cases
of SVANet. SVANet suffers particularly when the target
object: (a) appears for a very short time (almost 1 or 2 frames
out of 32 frames); (b) is too small, and there are numerous
distracting factors; (c) is small and moves quickly; (d) is
non-salient (here, the target object is a car, but a motorcycle,
is detected); (e) is similar to the background.

F. Discussion
F.1. Why Sketch Query?

Sketch query can be more flexible and efficient than lan-
guage or image query as it allows for more natural and
intuitive user input. With sketch query, users can quickly
and easily provide a rough sketch of the object they are



Results in video

M=t =gy

<
9

3 |

(d) Misidentification

(e) Cluttered Background

Figure 7. Failure cases of SVANet on QuickDraw dataset. Green and blue boxes represent ground truths and predictions, respectively.

looking for, rather than having to use specific keywords or
search through a pre-existing database of images. This can
make it easier for users to find the specific object they are
looking for, especially if the image is not easily describable
with keywords or if the image does not exist in a pre-existing
database. Moreover, sketch query can transcend the language
barrier, and can be less prone to ambiguity and errors as the
user is able to provide a visual representation of the desired
object. On the other hand, language query requires additional
translation when the user’s language changes (e.g., English
— French). Additionally, since sketch queries are basically
embodiments of real-world objects, the model inherently
learns over the visual similarity between the query sketch
and the video objects. Therefore, the model can leverage

such inductive bias of appearance matching for unseen cat-
egories. Sketch query offers a great degree of freedom and
can overcome several limitations that other queries (e.g.,
language or image) may include. There are several more
advantages in using sketch query:

1. As the use of touch screen devices (e.g., smartphones,
tablets) has recently increased, acquisition of sketch
data has become easier.

2. Sketch is not bound by the user’s age, race, and nation,
and even those with language difficulties can communi-
cate their thoughts;

3. Our model is effective even with a low-quality sketch
(e.g., QuickDraw), therefore users are not required to



draw well;

F.2. Limitations

While we believe that focusing on category-level localiza-
tion in the SVOL problem can take advantage of the abstract
nature of sketches, it is also important to consider the lim-
itations of this setting. In this setting, the system may lose
nuanced understanding of sketches that could be useful for
precisely identifying objects of the same category with dif-
ferent details. For example, if we want to localize a car of
a specific make and model, the system may not be able to
do so accurately as it is not explicitly taught to differentiate
objects within the same category during training. In order to
improve the versatility of the SVOL system, future research
may investigate on incorporating fine-grained data sources
to differentiate objects within the same category.

We also recognize that transfer performance for unseen
categories is still far from enough, yet this shows that SVOL
is a challenging problem and suggests that better solutions
should be found. We hope our findings and analysis will
encourage further research in this direction.

F.3. Future Work

We hope future work will develop approaches for the
following.
SVOL in large-scale video collection. On an online video
platform, users often need to quickly and efficiently find
the location of a specific object of interest amid large-scale
video collections. In order to be practical in such situations,
the SVOL system should be able to retrieve relevant videos,
and accurately localize the target objects within the set of re-
trieved videos. This is similar to the setting for video corpus
moment retrieval [84]. Such a system could greatly enhance
the user experience by allowing them to quickly locate the
desired object within the video corpus, making the process
of finding relevant information faster and more efficient. Al-
though it is beyond the scope of our current work, we believe
it to be promising area for future research.
Domain adaptation methods. The significant difference in
the appearance and structure between sketches and natural
videos poses a challenge for the SVOL system to accurately
match them. To alleviate this issue, various domain adapta-
tion techniques [25,26,51] can be employed. These tech-
niques aim to align the feature representations of the sketches
and natural videos, thus reducing the domain gap. By utiliz-
ing these techniques, we anticipate further improvements in
the performance of the SVOL system.
Fine-grained SVOL. In this work, we define the SVOL
task to be agnostic to shape and pose within the same class,
allowing us to localize objects in a video by sketching only
key features that are unique and distinctive to that object,
such as the ears, eyes, and tails of a cat. This setting has the
advantage of being able to identify and locate the object in

the video, even if the object’s shape and pose change over
time. However, this setting also has its limitations, as it may
miss important details that could be useful for differenti-
ating objects within the same class. Therefore, it may be
worth exploring a more fine-grained approach to the SVOL
problem, by focusing on detailed instance-level information
such as shape, pattern, and pose, which can be used to dis-
tinguish objects of the same category [83]. This shape- and
pose-specific approach, however, also comes with its own
challenges. For instance, it may be difficult to match a still
sketch to a moving object in a video, as the shape or pose
of objects continues to change over time. Thus, to make this
approach work effectively, it is essential to have a suitable
data pairing that takes into account the dynamic nature of
the video. Additionally, further research could explore ways
to effectively balance between leveraging the abstract nature
of sketches and preserving enough fine-grained details for
precise object identification.

On-the-fly SVOL. As opposed to our SVOL setting, which
requires a complete sketch to be drawn before localization
can begin, the “on-the-fly” setting allows for localization to
start as soon as the user begins drawing [4]. This approach
utilizes each stroke that is drawn in real-time to match it to
objects in the video. This allows for sketch-object matching
with an incomplete sketch (i.e., just a few strokes), which can
greatly reduce the time and effort required to draw an accu-
rate sketch. Furthermore, the system can provide immediate
feedback based on the ongoing localization results as the
user continues to draw, allowing for a more efficient and user-
friendly experience. It can help the user to understand how
well their sketch is matching with the objects in the video
and make adjustments accordingly. This can also make the
task of drawing accurate sketches more manageable for users
with less experience or skill.

F.4. Broader Impacts

Our SVANet makes predictions based on learned statis-
tics of the collected dataset, which may reflect biases present
the data, including ones with negative societal impacts. The
predictions may not be accurate, thus users exercise caution
and should not rely solely on them in real-world applications
and it is recommended to use it in conjunction with other
forms of analysis and decision-making. Further considera-
tion is warranted regarding this issue.
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