
DREAM: Visual Decoding from REversing HumAn Visual SysteM

— Supplementary Material —

Weihao Xia1 B Raoul de Charette2 Cengiz Oztireli3 Jing-Hao Xue1
1University College London 2Inria 3University of Cambridge

{weihao.xia.21,jinghao.xue}@ucl.ac.uk, raoul.de-charette@inria.fr, aco41@cam.ac.uk

This document includes further analyses on the back-
ground knowledge, experiments, and new results of our
method. We first provide more details on the NSD neu-
roimaging dataset in Sec. 1 and extend background knowl-
edge of the Human Visual System in Sec. 2, which to-
gether shed light on our design choices. We then detail
T2I-Adapter in Sec. 3. Sec. 4 provides thorough implemen-
tation of DREAM, including architectures, representations
and metrics. Finally, in Sec. 5 we further demonstrate the
ability of our method with new results of cues deciphering,
reconstruction, and reconstruction across subjects.

1. NSD Dataset
The Natural Scenes Dataset (NSD) [1] is currently the

largest publicly available fMRI dataset. It features in-depth
recordings of brain activities from 8 participants (subjects)
who passively viewed images for up to 40 hours in an MRI
machine. Each image was shown for three seconds and re-
peated three times over 30-40 scanning sessions, amount-
ing to 22,000-30,000 fMRI response trials per participant.
These viewed natural scene images are sourced from the
Common Objects in Context (COCO) dataset [11], enabling
the utilization of the original COCO captions for training.

The fMRI-to-image reconstruction studies that used
NSD [8, 16, 22] typically follow the same procedure: train-
ing individual-subject models for the four participants who
finished all scanning sessions (participants 1, 2, 5, and 7),
and employing a test set that corresponds to the common
1,000 images shown to each participant. For each partic-
ipant, the training set has 8,859 images and 24,980 fMRI
tests (as each image being tested up to 3 times). Another
982 images and 2,770 fMRI trials are common across the
four individuals. We use the preprocessed fMRI voxels in a
1.8-mm native volume space that corresponds to the “nsd-
general” brain region. This region is described by the NSD
authors as the subset of voxels in the posterior cortex that
are most responsive to the presented visual stimuli. For
fMRI data spanning multiple trials, we calculate the aver-
age response as in prior research [12]. Tab. 1 details the

Table 1. Details of the NSD dataset.

Training Test ROIs Subject ID Voxels

8859 982
V1, V2, V3, hV4,

VO, PHC, MT,
MST, LO, IPS

sub01 11694
sub02 9987
sub05 9312
sub07 8980

characteristics of the NSD dataset and the region of inter-
ests (ROIs) included in the fMRI data.

2. Detailed Human Visual System

Our approach aims to decode semantics, color, and depth
from fMRI data, thus inherently bounded by the ability of
fMRI data to capture the ad hoc brain activities. It is crucial
to ascertain whether fMRI captures the alterations in the re-
spective human brain regions responsible for processing the
visual information. Here, we provide a comprehensive ex-
amination of the specific brain regions in the human visual
system recorded by the fMRI data.

The flow of visual information [2] in neuroscience is pre-
sented as follows. Fig. 1 presents a comprehensive depic-
tion of the functional anatomy of the visual perception. Sen-
sory input originating from the Retina travels through the
LGN in the thalamus and then reaches the Visual Cortex.
Retina is a layer within the eye comprised of photorecep-
tor and glial cells. These cells capture incoming photons
and convert them into electrical and chemical signals, which
are then relayed to the brain, resulting in visual perception.
Different types of information are processed through the
parvocellular and magnocellular pathways, details of which
are elaborated in the main paper. LGN then channels the
conveyed visual information into the Visual Cortex, where
it diverges into two streams in Visual Association Cortex
(VAC) for undertaking intricate processing of high-level se-
mantic contents from the visual image.

The Visual Cortex, also known as visual area 1 (V1),
serves as the initial entry point for visual perception within



Figure 1. Functional Anatomy of Cortex. The functional local-
ization in the human brain is based on findings from functional
brain imaging, which link various anatomical regions of the brain
to their associated functions.
Source: Wikimedia Commons. This image is licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported license.

the cortex. Visual information flows here first before be-
ing relayed to other regions. VAC comprises multiple re-
gions surrounding the visual cortex, including V2, V3, V4,
and V5 (also known as the middle temporal area, MT). V1
transmits information into two primary streams: the ventral
stream and the dorsal stream.

• The ventral stream (black arrow) begins with V1, goes
through V2 and V4, and to the inferior temporal cortex
(IT cortex). The ventral stream is responsible for the
“meaning” of the visual stimuli, such as object recog-
nition and identification.

• The dorsal stream (blue arrow) begins with V1, goes
through visual area V2, then to the dorsomedial area
(DM/V6) and medial temporal area (MT/V5) and to
the posterior parietal cortex. The dorsal stream is en-
gaged in analyzing information associated with “posi-
tion”, particularly the spatial properties of objects.

After juxtaposing the explanations illustrated in Fig. 1
with the collected information demonstrated in Tab. 1, it be-
comes apparent that the changes occurring in brain regions
linked to the processing of semantics, color, and depth are
indeed present within the fMRI data. This observation em-
phasizes the capability to extract the intended information
from the provided fMRI recordings.

3. T2I-Adapter
T2I-Adapter [14] and ControlNet [27] learn versatile

modality-specific encoders to improve the control ability of
text-to-image SD model [19]. These encoders extract guid-
ance features from various conditions y (e.g. sketch, seman-
tic label, and depth). They aim to align external control with

internal knowledge in SD, thereby enhancing the precision
of control over the generated output. Each encoder R pro-
duces n hierarchical feature maps Fi

R from the primitive
condition y. Then each Fi

R is added with the corresponding
intermediate feature Fi

SD in the denoising U-Net encoder:

FR = R (y) ,

F̂
i

SD = Fi
SD + Fi

R, i ∈ {1, 2, · · · , n}.
(1)

T2I-Adapter consists of a pretrained SD model and sev-
eral adapters. These adapters are used to extract guidance
features from various conditions. The pretrained SD model
is then utilized to generate images based on both the in-
put text features and the additional guidance features. The
CoAdapter mode becomes available when multiple adapters
are involved, and a composer processes features from these
adapters before they are further fed into the SD. Given the
deciphered semantics, color, and depth information from
fMRI, we can reconstruct the final images using the color
and depth adapters in conjunction with SD.

4. Implementation Details
4.1. Network Architectures

The fMRI 7→ Semantics encoder Efmri maps fMRI vox-
els to the shared CLIP latent space [17] to decipher seman-
tics. The network architecture includes a linear layer fol-
lowed by multiple residual blocks, a linear projector, and a
final MLP projector, akin to previous research [4, 20]. The
learned embedding is with a feature dimension of 77 × 768,
where 77 denotes the maximum token length and 768 rep-
resents the encoding dimension of each token. It is then fed
into the pretrained Stable Diffusion [19] to inject semantic
information into the final reconstructed images.

The fMRI 7→ Depth & Color encoder E and decoder D
decipher depth and color information from the fMRI data.
Given that spatial palettes are generated by first downsam-
pling (with bicubic interpolation) an image and then upsam-
pling (with nearest interpolation) it back to its original res-
olution, the primary objective of the encoder E and the de-
coder D shifts towards predicting RGBD images from fMRI
data. The architecture of E and D is built on top of [7], with
inspirations drawn from VDVAE [5].

4.2. Representations of Semantics, Color and Depth

This section serves as an introduction to the possible
choices of representations for semantics, color, and depth.
We currently use CLIP embedding, depth map [18], and
spatial color palette [14] to facilitate subsequent process-
ing of T2I-Adapter [14] in conjunction with a pretrained
Stable Diffusion [19] for image reconstruction from deci-
phered cues. However, there are other possibilities that can
be utilized within our framework.

https://upload.wikimedia.org/wikipedia/commons/d/db/Constudproc.png
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Figure 2. Depth and Color Representations. We present pseudo
ground truth samples of Depth (MiDaS prediction [18]) and Color
(×64 downsampling of the test image) for a NSD input image.

Semantics. The Stable Diffusion utilizes a frozen CLIP
ViT-L/14 text encoder to condition the model on text
prompts. It is with a feature space dimension of 77 × 768,
where 77 denotes the maximum token length and 768 rep-
resents the encoding dimension of each token. The CLIP
ViT-L/14 image encoder is with a feature space dimension
of 257 × 768. We maps flattened voxels to an intermedi-
ate space of size 77 × 768, corresponding to the last hidden
layer of CLIP ViT/L-14. The learned embeddings inject se-
mantic information into the reconstructed images.

Depth. We select depth as the structural guidance for two
main reasons: alignment with the human visual system, and
better performance demonstrated in our preliminary experi-
ments. Following prior research [14,27], we use the MiDaS
predictions [18] as the surrogate ground truth depth maps,
which are visualized in Fig. 2.

Color. There are many representations that can provide
the color information, such as histogram and probabilis-
tic palette [9, 23] However, ControlNet [27] and T2I-
Adapter [14] only accept spatial inputs, which leaves no al-
ternative but to utilize the spatial color palettes as the color
representation. In practice, spatial color palettes resemble
coarse resolution images, as seen in Fig. 2, and are gener-
ated by first ×64 downsampling (with bicubic interpolation)
an image and then upsampling (with nearest interpolation)
it back to its original resolution.

During the image reconstruction phase, the spatial
palettes contribute the color and appearance information to
the final images. These spatial palettes are derived from the
image estimated by the RGBD decoder in R-PKM. We refer
to the images produced at this stage as the “initial guessed
image” to differentiate them from the final reconstruction.
The initial guessed image offers color cues but it also con-
tains inaccuracies. By employing a ×64 downsampling, we
can effectively extract necessary color details from this im-
age while minimizing the side effects of inaccuracies.

Other Guidance. In the realm of visual decoding with pre-
trained diffusion models [14,26,27], any guidance available
in these models can be harnessed to fill in gaps of miss-
ing information, thereby enhancing performance. This spa-
tial guidance includes representations such as sketch [21],
Canny edge detection, HED (Holistically-Nested Edge De-
tection) [25], and semantic segmentation maps [3]. These
alternatives could potentially serve as the intermediate rep-
resentations for the reverse pathways in our method. HED
and Canny are edge detectors, which provide object bound-
aries within images. However, during our preliminary ex-
periments, both methods were shown to face challenges in
providing reliable edges for all images. Sketches encounter
similar difficulties in providing reliable guidance. The se-
mantic segmentation map provides both structural and se-
mantic cues. However, it overlaps in function with CLIP
semantics and depth maps, and leads to diminished perfor-
mance gain on top of the other two representations.

4.3. Evaluation Methodology

Metrics for Visual Decoding. For visual decoding met-
rics, we employ the same suite of eight evaluation criteria as
previously used in research [8, 16, 20, 22]. PixCorr, SSIM,
AlexNet(2), and AlexNet(5) are categorized as low-level,
while Inception, CLIP, EffNet-B, and SwAV are considered
high-level. Following [16], we downsampled the generated
images from a 512 × 512 resolution to a 425 × 425 reso-
lution (corresponding to the resolution of ground truth im-
ages in the NSD dataset) for PixCorr and SSIM metrics.
For the other metrics, the generated images were adjusted
based on the input specifications of each respective net-
work. It should be noted that not all evaluation outcomes
are available for earlier models, depending on the metrics
they chose to experiment with. Our quantitative compar-
isons with MindEye [20], Takagi et al. [22], and Gu et
al. [8] are made according to the exact same test set, i.e.,
the 982 images that are shared for all 4 subjects. Lin et
al. [10] disclosed their findings exclusively for Subject 1,
with a custom training-test dataset split.

Metrics for Depth and Color. We additionally measure
consistency of our extracted depth and color. We bor-
row some common metrics from depth estimation [13] and
color correction [24] to assess depth and color consisten-
cies in the final reconstructed images. For depth metrics,
we report Abs Rel (absolute error), Sq Rel (squared er-
ror), RMSE (root mean squared error), and RMSE log (root
mean squared logarithmic error) — detailed in [13].

For color metrics, we use CD (Color Discrepancy) [24]
and STRESS (Standardized Residual Sum of Squares) [6].
CD calculates the absolute differences between the ground
truth I and the reconstructed image Î by utilizing the nor-
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Figure 3. DREAM Decoding of Depth and Color. We display the test image corresponding to fMRI, alongside the depth ground truth
(D) and the depth/color predictions (D̂, Ĉ). The R-PKM component predicts depth maps and the initial guessed RGB images (Î0). The
predicted spatial palettes are derived from these initial guessed images. The results highlight the proficiency of our R-PKM module in
capturing and converting intricate aspects from fMRI recordings into essential cues for visual reconstructions.

malized histograms of images segmented into bins:

CD(I, Î) =
∑∣∣∣H (I)−H(Î)

∣∣∣ , (2)

where H(·) represents the histogram function over the given
range (e.g. [0, 255]) and number of bins. In simpler terms,
this equation computes the absolute difference between the
histograms of the two images for all bins and then sums
them up. The number of bins for histogram is set as 64.
STRESS calculates a scaled difference between the ground-
truth C and the estimated color palette Ĉ:

STRESS = 100

√∑n
i=1

(
F Ĉi − Ci

)2∑n
i=1 C

2
i

, (3)

where n is the number of samples and F is calculated as

F =

∑n
i=1 ĈiCi∑n
i=1 Ĉ

2
i

. (4)

5. Additional DREAM Results
This section presents additional results of our method,

to showcase the effectiveness of DREAM. Sec. 5.1 presents
the fMRI 7→ depth & color results, which demonstrates how
the deciphered and represented color and depth information
helps to boost the performance of visual decoding. Sec. 5.2
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Figure 4. Sample Depth. We show sample depth maps (D̂) deci-
phered from fMRI using R-PKM, alongside the ground-truth depth
(D) estimated from MiDaS [18] on the original test image (I).

provides more examples of fMRI test reconstructions from
subject 1. The results shows that the extracted essential cues
from fMRI recordings lead to enhanced consistency in ap-
pearance, structure, and semantics when compared to the
viewed visual stimuli. Sec. 5.3 provides results of all four
subjects.

5.1. Depth & Color Deciphering

Fig. 3 showcases additional depth and color results de-
ciphered from the R-PKM component. Overall, it is able
to capture and translate these intricate aspects from fMRI
recordings to spatial guidance crucial for more accurate im-
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Figure 5. DREAM Reconstructions. We show reconstruction for subject 1 (sub01) from the NSD dataset. Our approach extracts essential
cues from fMRI recordings, leading to enhanced consistency in appearance, structure, and semantics when compared to the viewed visual
stimuli. The results are randomly selected. The illustrated depth, color, and final images demonstrate that the deciphered and represented
color and depth cues help to boost the performance of visual decoding.
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Figure 6. Subject-Specific Results. We visualize subject-specific outputs of DREAM on the NSD dataset. For each subject, the model is
retrained because the brain activity varies across subjects. Overall, it consistently reconstructs the test image for all subjects while we note
that some reconstruction inaccuracies are shared across subjects (cf. Sec. 5.3). Quantitative metrics are in Tab. 2.

Table 2. Subject-Specific Evaluation. Quantitative evaluation of the DREAM reconstructions for the participants (sub01, sub02, sub05,
and sub07) of the NSD dataset. Performance is stable accross all participants, and consistent with the results reported in the main paper.
Some example visual results can be found in Fig. 6.

Subject Low-Level High-Level
PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

sub01 .288 .338 95.0% 97.5% 94.8% 95.2% .638 .413
sub02 .273 .331 94.2% 97.1% 93.4% 93.5% .652 .422
sub05 .269 .325 93.5% 96.6% 93.8% 94.1% .633 .397
sub07 .265 .319 92.7% 95.4% 92.6% 93.7% .656 .438

age reconstructions.
For depth, the second and third columns show exam-

ple depth reconstruction alongside their corresponding esti-
mated ground truth obtained from the original RGB images.
Results show that the depth estimated, while far from per-
fect, is sufficient to provide coarse guidance on the scene
structure and object position/orientation for our reconstruc-
tion guidance purpose.

The last two columns show the color results. The pre-
dicted spatial palettes are generated by downscaling the
“initial guessed images” denoted Î0 (not to be confused
with Î) which corresponds to the RGB channels of the R-
PKM RGBD output. As discussed in Sec. 4.2, employ-
ing a ×64 downsampling on the “initial guessed images”
achieves a trade-off between efficiently extracting essen-
tial color cues and effectively mitigating the inaccuracies
in these images. Despite not accurately preserving the color
of local regions due to the resolution, the produced color

palettes provide a relevant constraint and guidance on the
overall color tone. Additional depth outputs are in Fig. 4.

Although depth and color guidance are sufficient to re-
construct images reasonably resembling the test one, it is
yet unclear if better depth and color cues can be extracted
from the fMRI data or if depth and color are doomed to be
coarse estimation due to loss of data in the fMRI recording.

5.2. More Image Reconstruction Results

More examples of image reconstruction for subject 1 are
shown in Fig. 5. From left to right: the first two columns
display the test images and their corresponding ground truth
depth maps. The third and fourth columns depict the pre-
dicted depth and color, respectively, in the form of depth
maps and spatial palettes. The remaining columns represent
the final reconstructed images. The results are randomly se-
lected. The illustrated final images demonstrate that the de-
ciphered and represented color and depth cues help to boost



the performance of visual decoding. Overall, DREAM ev-
idently extracts good-enough cues from the fMRI record-
ings, leading to consistent reconstruction of the appearance,
structure, and semantics of the viewed visual stimuli.

5.3. Subject-Specific Results

We used the same standardized training-test data splits
as other NSD reconstruction papers [15, 16, 20], training
subject-specific models for each of 4 participants (sub01,
sub02, sub05, and sub07). More details on the different
participants can be found in Sec. 1 and Tab. 1. Fig. 6 shows
DREAM outputs for all four participants, with individual
subject evaluation metrics reported in Tab. 2. More sub01
results can be found in Fig. 5. Overall, DREAM proves to
work well regardless of the subject. However, it is inter-
esting to note that some reconstructions mistakes are shared
across subjects. For example, fMRIs of the vase flowers pic-
ture (3rd column) are often reconstructed as paintings, ex-
cept for sub05, and the food plate (2nd rightmost column)
which is taken at an angle is almost always reconstructed
as a more top-view photography. These consistent mistakes
across subjects may suggest dataset biases.
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