
A. Implementation and Training Details
Backbone network architecture: We use a Cascade
Masked RCNN [16] that was pretrained on Cityperson [51]
as the localization network to localize the human actor at the
start frame. We use X3D-M [10] as the temporal inference
backbone to give the final predicted label.
Training details: All the mutual information calculations
are implemented on a high-end desktop CPU (Intel Xeon
W-2288 CPU), because current version of CUDA does
not support histogram operations on GPUs. Our overall
model is trained using NVIDIA GeForce 2080Ti GPUs and
NVIDIA RTX A5000 GPUs. We use the same initializa-
tion as [26]. The initial learning rate is set at 0.1 for train-
ing from scratch and 0.05 for initializing with Kinetics pre-
trained weights. Stochastic Gradient Descent (SGD) is used
as the optimizer with 0.0005 weight decay and 0.9 momen-
tum. We use cosine/poly annealing for learning rate decay
and multi-class cross entropy loss to constrain the final pre-
dictions.
Evaluation: We evaluate our method and other state-of-
the-art methods using Top-1 accuracy score, which is the
proportion of the correct predictions to all the samples in
the evaluation set.

B. Mutual Information
Mutual information is a concept in information theory

that essentially measures the amount of information given
by one variable when observing another variable. It can
also be interpreted as the reduction of the uncertainty of
one variable given the other. Mutual information is highly
correlated with entropy and joint entropy. The mutual infor-
mation between image pairs X and Y can be equivalently
expressed as:

I(X;Y ) = H(X) +H(Y )−H(X,Y ), (13)

where H(X) and H(Y ) correspond to the entropy of X
and Y , respectively. The entropy quantifies the complexity
of all possible outcomes of X or Y . Given pX(x), x ∈ X
the probability mass function (PMF) of X , the entropy of
X , H(X) can be calculated as:

H(X) = −
∑
x∈X

pX(x) log pX(x). (14)

H(X,Y ) is the joint entropy that examines the overall ran-
domness given both X and Y :

H(X,Y ) = −
∑

x∈X ,y∈Y
pXY (x, y) log pXY (x, y), (15)

where pXY (x, y), x ∈ X , y ∈ Y is the joint probabil-
ity distribution of intensities of pixels associated with X

and Y . The joint entropy H(X,Y ) is minimized if and
only if there is a one-to-one mapping function G such
that pX(x) = pY (G(x)) = pXY (x,G(x)). It increases
when the inherent statistical relationship between X and Y
weakens. Therefore, as pixels in X become more distinc-
tive from the counterparts in Y , H(X,Y ) gets larger and
I(X;Y ) gets smaller. Note that, if the image or region pairs
X and Y are completely independent from each other, then:

H(X,Y ) = H(X) +H(Y ),

I(X;Y ) = 0.
(16)

In our case, we use mutual information to obtain and align
the region pairs in the temporal domain of a video. There-
fore, X and Y are always correlated and I(X;Y ) ̸= 0.
Moreover, as we calculate mutual information using prob-
ability distribution of discrete pixels, we use sums instead
of integrals in Eq . 14 and 15. We use Eq. 14 and 15 to
express the mutual information on Eq. 13 using probability
distributions. Therefore:

I(X;Y ) =
∑

x∈X ,y∈Y
pXY (x, y) log

pXY (x, y)

pX(x)pY (y)
. (17)

From the equation above, we can see that the mutual in-
formation quantifies the dependence between two random
variables by measuring the distance between the real joint
distribution pXY (x, y) and the distribution under assump-
tion of complete independence of pX(x)pY (y).

Intuitively, as Viola [47] observes, maximizing the mu-
tual information between two images or regions tends to
find the most complex overlapping areas (by maximizing
the individual entropy) such that at the same time they ex-
plain each other well (by minimizing the joint entropy).

The joint mutual information is an extension of mutual
information. It measures the statistical relationship between
a single variable and a set of other variables. Given one im-
age Y and a set of images X1, X2, the joint mutual infor-
mation is expressed as:

I(X1, X2;Y ) = I(X1;Y ) + I(X2;Y |X1). (18)

where I(X2;Y |X1) is the conditional mutual information
that measures the dependence between X2 and Y when ob-
serving X1.

C. Ablation Experiments
We perform ablation experiments to examine the impact

of bin number for histograms to calculate mutual informa-
tion, reference image size, sliding window stride, searching
region and MIS hyperparameters. We randomly pick 30%
videos for each action label int UAV-Human and conduct
the ablation experiments on this UAV-Human subset. We



Histogram Bin number Top-1 Reference image Size Top-1 Sliding Stride Top-1 Searching area size Top-1

32 52.3 1.10 × 53.4 5 52.7 1.25× reference size 52.4
64 52.7 1.25 × 54.0 10 53.0 1.50× reference size 52.7

128 54.3 1.5 × 53.7 15 52.8 2.00× reference size 52.5
256 52.7 1.75 × 52.5 20 51.1 2.50× reference size 52.1

Table 9. Ablation studies on UAV-Human subset in terms of using different bin numbers to calculate mutual information, reference image
size (times of the standard size), using different strides for slipping windows, and searching area size. The best performance is achieved
while using 128 histogram bins, reference image size 1.25× and sliding stride of 10. The size of the searching area does not affect the
overall performance of our method. The top-1 accuracy only varies 0.6% while using different searching area sizes. This demonstrates the
robustness of our MITFAS as the larger searching area contains more noises and outliers.

use X3D-M [10] as the temporal inference backbone net-
work. All results are generated by using a sequence of 16
frames with resolution 224× 224. All the results are shown
in Table. 9.

C.1. Bin Numbers for Histograms

We calculate the mutual information between two im-
ages by using their probability distributions. However, there
is no exact mathematical model known to precisely calcu-
late the actual probability distributions related to each im-
age. As we mentioned in Eq. 4, we use marginal and joint
histograms to approximate the probability distribution. We
obtain the joint histogram by binning pairs of pixel values in
the two frames. Therefore, bin number is an important hy-
per parameter for calculating the mutual information. We
explore the effects of the number of bins used to generate
the joint histogram on the overall performance. We present
the results of using different number of bins in Table 9. It
shows that the overall accuracy does not monotonically in-
crease as more bins are used and bins number around 128
will result in the best overall performance. It is reasonable
because if the histogram is generated with too few bins, then
it can not portray the data very well. If too many bins are
used, the histogram will not be able to give a good sense
of distribution. Therefore, both large and small bin number
will lead to bad approximation of the probability distribu-
tion, which makes the mutual information calculation less
accurate. Moreover, the memory overhead will exponen-
tially grows as more bins are used because the calculation
takes the square times of the bin number. To balance the
efficiency and accuracy, we use 128 as the bin number for
all the experiments in this paper.

C.2. Reference Image Size

Our method needs a reference image without much back-
ground information redundancy at the beginning, since we
need this inference image as the basis to calculate the mu-
tual information with other frames and eventually obtain a
sequence of well aligned regions. However, it is hard to
determine how much background information is sufficient
enough for aerial recognition as all our videos are captured

in the oblique and aerial views with drone cameras. There-
fore, we evaluated the impact of different ratio of the back-
ground in UAV videos. Let the size of the bounding box
generated by the localization network be the standard size.
We conduct the experiments on reference images with 4 dif-
ferent sizes (i.e., 1.1 ×, 1.25 ×, 1.5 ×, and 1.75 × of the
standard size). As can see in Table . 9, when the reference
images is 1.25× of the standard size, we obtain the best
performance. Less reference image size makes the model
unable to analyze the relationship between the human actor
and the surroundings due to less background information.
But more background information will bring more noises
and outliers, decreasing the overall accuracy.

C.3. Sliding Window Stride

After we obtain the reference image, we use it for MI
alignment with the subsequent frame. Here we employ slid-
ing window strategy to find the well-aligned regions that
correspond to salient motions in the video. While comput-
ing the sliding window, the stride is an important element
that needs to be considered since it dramatically effects the
overall efficiency. Larger stride means less searching time
but decreases the accuracy, as shown in Table 9, stride value
at 10 results in the highest accuracy. Therefore, we choose
10 as the sliding window stride for all benchmarks.

C.4. Searching Region

As mentioned in Section 3.4, to reduce the overall mu-
tual information computations, once we compute ω∗

t at time
t, we use ω∗

t at t+1 to obtain the region Lω∗
t
(Ft+1). Then,

we only search in the searching area which is generated by
expanding Lω∗

t
(Ft+1) by 25% at t+1. Therefore, the size of

the searching area is an important hyper parameter for our
method. As shown in Table. 9 we conduct experiments with
different searching area sizes, 1.25×, 1.5×, 2.0×, 2.5× the
size of the Lω∗

t
(Ft+1), on the UAV-Human subset. Surpris-

ingly, the result shows that the searching area size does not
have significant impacts on the overall performance of our
method (MITFAS). The top-1 accuracy only varies 0.6%
while using different searching area sizes. This demon-
strates the robustness of our method, as the larger search-



ing area will contains more noises and outliers. Overall, our
MITFAS is robust to outliers and can precisely obtain and
align the regions existing salient human motions. There-
fore, to reduce the overall training time, we choose the
searching area size to be 1.25× the size of Lω∗

t
(Ft+1) in

all other benchmarks in this paper.


