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In this supplement, we provide additional experiments
and analyses for the proposed method.

1. Varied Degrees of Congestion
We further evaluate the proposed methods across varying

levels of crowd congestion. Notably, we compare the per-
formance of our method, referred to as Ours, with a base-
line trained solely on regression labels. Our findings reveal
that as crowd size increases (e.g., crowd number >1,000),
Ours (Partial Weak Labels) and Ours exhibit improved per-
formance. This highlights the adaptability of our model in
dense scenes. We obtain similar outcomes on the UCF-
QNRF dataset. Particularly in dense scenes, as illustrated
in Fig 1, our proposed method Ours outperforms the base-
line.

Figure 1: Accuracy (%) with different crowd numbers for
the proposed models and baseline.

2. Beyond the “More than Twice” Assumption
We make a reasonable assumption that the number of

people in the two images can be distinguished easily with
more than twice the difference in crowd sizes between them.
To explore more about the assumption, we incrementally
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adjust more critical times representing for difference in
numbers between a pair of images by 1N, 1.5N, 2N, 3N ,
where 2N represents the setting on the above assumptions
in our experiments. The results are shown in Table 1. The
results indicate that the ability of annotators to recognize
and compare crowd numbers at a glance can affect the per-
formance of the proposed method with a subjective aspect.

Table 1: Impacts of the crowd number difference between a
ranking image pair. The best results are highlighted in bold.

Times MAE MSE

1N 62.1 95.3
1.5N 67.7 101.6
2N 69.8 104.2
3N 81.3 112.6

Table 2: Results under different crowd distributions.

Uniformly Non-Uniformly

Method MAE MSE MAE MSE

Ours (Partial Labels w/o MLP) 66.4 105.3 72.5 118.4
Ours (Partial Labels w/ MLP) 66.2 104.8 70.6 113.1

3. Uniform and Non-uniform Distributions
To assess our performance across various scenarios, we

conducted tests in settings featuring either uniform or non-
uniform distributions. In the absence of a uniform dataset,
we individually selected 50 crowd images from the Shang-
haiTech Part A [6] dataset to construct datasets representing
both uniform and non-uniform scenarios.

For uniform scenarios, we opted for crowd images show-
casing an even distribution of people throughout the scene.



Table 3: Results of our proposed method in simple baseline(CSRNet [2]) on ShanghaiTech Part A [6] and UCF-QNRF [1].
“label level” refers to the supervision level of training. ✔ means the model employs all the labels under the corresponding
level of supervision, and ✦ means the model employs a few labels at this supervision level. ∗ indicates the 0.1% of the
parameters are tuned with location-level supervision. Note that, Ours exploits the same amount of count labels as other
weakly supervised methods, and ranking labels can be auto-generated from count labels without extra annotating effort. ✫
indicates that our model is purely trained with ranking labels.

Label level ST PartA[6] UCF-QNRF[1]

Method Location Count MAE↓ MSE↓ MAE↓ MSE↓
CSRNet [2] ✔ 68.2 115.0 119.2 211.4

CSRNet (Count label only) ✔ 85.6 128.1 149.0 245.3
CSRNet (Count label only+L2R[3]) ✔ 84.91 125.2 144.6 238.2

CCLS [5] ✔ 104.6 145.2 - -
Ours (Ranking Only) ✫ 93.4 142.5 165.3 277.7

Ours (Partial Weak Labels) ✦ 91.6 138.5 158.7 266.7
Ours ✔ 76.9 113.1 133.0 218.8

For non-uniform scenarios, we chose images with more dis-
persed crowds and introduced random rotations to accentu-
ate diverse distributions. The results of our method, Ours
with Partial Labels, are presented in Table 2.

Our findings indicate that our model delivers superior
performance on uniformly distributed data compared to
non-uniform scenarios. This outcome aligns with the in-
tuitive expectation that uniform distributions enable the al-
gorithm to capture crowd features more evenly across the
image. Moreover, we introduced the Upside-Down MLP
branch to enhance the model’s performance across differ-
ent distributions. The results in Table 2 reveal that while
the model with the MLP demonstrates slight improvement
in uniform distribution scenarios, it significantly enhances
performance in non-uniform scenarios. This underscores
the module’s effectiveness in enhancing the model’s robust-
ness across diverse distributions.

4. Effectiveness of Ranking
To assess the effectiveness of our ranking strategy, we

utilize the CSRNet [2], a basic convolutional neural network
(CNN)-based crowd counting architecture, as the backbone
of the Siamese network. This backbone consists of a pre-
trained CNN for frontend 2D feature extraction and a di-
lated convolutional layer for expanding reception fields on
the backend. For the sake of fairness, we omitted other pro-
posed modules from the paper that could enhance perfor-
mance.

As indicated in Table 3, CSRNet [2] denotes the base-
line utilizing location-level supervision. CSRNet (Count
label only) represents the regression-based baseline solely
supervised by count labels. Adding to this, CSRNet (Count
label only) +L2R [3] introduces “cropping rank” supervi-
sion to the previous label-only model. It is important to
note that the weakly-supervised method CCLS [5], as well
as our proposed method, both build upon the same feature
extractor, CSRNet [2], for equitable comparison.

Evidently, our method outperforms the weakly-
supervised regression method, CCLS [5], which represents
the state-of-the-art approach employing regression-based
training at the same supervision level. Moreover, our
method, denoted as Ours(Ranking Only) and Ours(Partial
Weak Labels), achieves lower counting error than the
label-only baseline (CSRNet) due to the introduction of
ranking pair supervision. Furthermore, it attains a lower
error than the L2R supervised count label regression model.
This demonstrates the considerable utility of ranking labels
for regression in count-level supervision.

Importantly, Ours exhibits the best performance in a
weakly-supervised setting in terms of MAE and MSE, ap-
proaching the performance of the location level baseline,
CSRNet [2]. This underscores that even with a simple base-
line, our method remains effective.

Table 4: The effect of ranking labels in the simulated real-
world counting.

Setting MAE MSE

Baseline 101.8 138.2
Ours (Partial Weak Labels) (1,000 pairs) 83.3 124.5
Ours (Partial Weak Labels) (5,000 pairs) 79.4 119.1

Ours (Partial Weak Labels) (25,000 pairs) 77.4 112.3

5. Ranking Labels in Real-world Counting

Unlike the crowd data in benchmarks, the real-world
crowd data is often a large quantity of unlabeled crowd im-
ages, so it is infeasible to annotate all of the extracted pairs.
Especially in the mid-to-late stage of training, many abun-
dant pairs with large numerical differences almost have no
effect on loss, and just consume computing power in vain.
Therefore, sparse labeling is preferable for massive, wild,
and unlabeled crowd data. Denote the number of labels
associated with crowd image xi as ζ(xi), and the average



number of ζ(xi) in dataset D as ζ(D). (Note that only the
labeled image will be included, thus ζ(·) ≥ 1.) In short,
with sufficient training samples, ζ(D) is closer to 1, which
means the labels per image are sparse. Furthermore, an on-
line labeling strategy can work well with sparse labeling.
Before the start of training, the ranking pairs are labeled
under the setting, ζ(D) = 1. After training for some time,
ζ(D) can become larger.

Practically, to verify the proposed ranking label in real
scenes, we simulate the real annotation on a fixed num-
ber of real-world images. They are from JHU-CROWD++
[4], which contains 1.51 million annotated heads spanning
4,372 images, and is a challenging dataset with various sce-
narios. For the sparse labeling experiment, we randomly
select 2,000 images forming 1,000 ranking pairs, and the
sparse labeling strategy greatly reduces the number of la-
bels per image ζ(D), from hundreds to one. In the other
two experiments, we added annotated ranking pairs besides
these 2,000 images with 5,000 pairs, and 25,000 pairs to
verify the impact of label intensity.

The model is trained by combining ranking with free re-
gression labels (Ours with partial labels) from the count-
ing anchor set whose size is 50. The training is on the se-
lected images from JHU-CROWD++, and the evaluation is
on the widely used ShanghaiTech Part A dataset. As illus-
trated in Table 4, compared with the baseline of regression
on the anchor set, the model with 1,000 comparison labels
achieves a satisfactory performance with a few extra anno-
tations. Adding more ranking labels leads to a slight im-
provement but brings a heavy annotation load.
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