
Table 7. Fine-tuning setting.

config value
optimizer AdamW [39]
base learning rate 5e− 4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999 [9]
layer-wise lr decay [2, 13] 0.65
batch size 1024
learning rate schedule cosine decay [38]
warmup epochs [24] 5
training epochs 100
cutmix [63] 1.0
drop path 0.1
mixup [64] 0.8
weight decay 0.05
label smoothing [53] 0.1
augmentation RandAug(9, 0.5) [14]

A. Implementation details of DPPMask
Suppose we add i into the subset Yg ∪{j}. From Eq. 10,

we have[
V 0
cj dj

]
c′⊤i = LYg∪{j},i =

[
LYg,i

Lji

]
, (13)

where

c′i =
[
ci (Lji − ⟨cj , ci⟩) /dj

] .
=

[
ci ei

]
. (14)

For updating di, we have

d′2i = Lii − ∥c′i∥
2
2

= Lii − ∥ci∥22 − e2i

= d2i − e2i .

(15)

With Eq. 14 and Eq. 15, we can update d incrementally.

B. ImageNet-100 setting
We follow the original MAE [26] experiment setting, ex-

cept for the learning rate of fine-tuning task. We list our
fine-tuning parameters in Tab. 7. For iBOT [67], we train a
ViT-small backbone with 100 epochs. We change the block
mask strategy with random, and set masking ratio to 70%
with 5% variation. We list our fine-tuning parameters in
Tab. 8

C. Greedy approximation performance
We examine the approximation performance with re-

spect to original DPPs. We run each setting with one en-
tire epoch and report the mean time cost of each iteration.
As Tab. 9 shows, the greedy approximation achieved 10x
faster than original DPPs, which makes it possible to fit into
a GPU training loop.

Table 8. iBOT pre-train setting.

config value
learning rate 5e− 4
teacher momentum [2] 0.996
teacher temp 0.07
warmup teacher temp epochs [2] 30
out dim 8192
local crops number 10
global crops scale [0.25, 1]
local crops scale [0.05, 0.25]
mask ratio 0.7
mask ratio var 0.05
masking prob 0.5

Table 9. Training efficiency of DPPMask

Method DPP DPP (Greedy approximation) Random

Training speed 2.7442s/it 0.2609 s/it 0.2129 s/it

D. More discussion about relative works
Our method is different from recent masking strategies.

Recent strategies can roughly divide into two lines of work,
learning-based and attention-based.
Learning-based strategies include ADIOS [52] and Sem-
MAE [35]. They both need extra learning parameters.
ADIOS trains a network to propose masks adversarially, in
order to find out more meaningful masks for MIM tasks.
However, the semantic meaningful masks proposed by the
network are hard to predict, which is less explainable. Sem-
MAE separates the mask learning process from pre-training
and makes the training process into two stages. The type
of masks they learned are more like semantic parts, such
as heads, arms, etc. However, as the semantics varies in
images, the number of classes is hard to define, therefore
weakening the application of such methods.
Attention-based strategies include AttMask [29] and
AMT [25]. This line of work selects patches according to
the attention map. Despite different policies to manipulate
the attention map, both intend to retain some patches with
high attention scores to give a ”hint” to the model as such
patches are more likely to have more semantics. Note this
policy aligns with our ideas. However, they do not asso-
ciate it with misalignment problems in MIM, thus leading
to an inferior policy. Furthermore, attention maps require
an extra forward pass to compute, which brings more com-
putation.

E. Alignment versus diversity
As we discussed in 3.1, DPPMask aims to purge the

training pairs that are polluted by misalignment problems.
However, the network also needs irrelevant information be-
tween different masks to perform feature learning which can
be measured as the variance of sampled masks. Here, we
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(a) Alignment
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(b) Diversity

Figure 7. Alignment and diversity of different τs, τ = 1 indicate
random masking.

show that DPPMask achieves the adjustment between align-
ment and diversity. We first obtain the original semantic
representation by feeding the network with unmasked im-
ages and saving the cls token. Then, we obtain the masked
semantic representation by saving the cls tokens of masked
images under different masking strategies. We compute the
L2 distance between masked semantics and original seman-
tics to illustrate the alignment of different masking strate-
gies. For masked semantic representation, we run 5 inde-
pendent trails and compute the L2 distance between each
trail to illustrate the diversity of different masking strate-
gies. As shown in 7, random masking has the most diver-
sity, but it also suffers from the misalignment problem, i.e.
the farthest distance between masked semantics and origi-
nal semantics 7a. As the τ decrease, the distance between
masked semantics and original semantics has been reduced,
indicating more alignment to the original semantics. How-
ever, a lower τ cause less diversity of different masks, which
can purge some useful training pairs and is not helpful for
feature learning 7b.

F. Broader impact
Despite the eye-catching performance of MIM algo-

rithms, what makes a good mask for MIM tasks still re-
mains unclear. DPPMask provides a possible answer to
this question. By analog to the InfoMin principle of con-
trastive learning. We conclude two properties of MIM.
Masked images should retain the original semantics while
minimizing shared information from different masks. Mini-
mizing shared information can be achieved by setting a high
mask ratio, while how to retain the original semantics is a
non-trivial problem. Furthermore, DPPMask also models
the probability-of-co-occurrence of each patch and thus can
serve as a potential tool to study the relationship between
such two properties.



Figure 8. More qualitative samples. Each triplet indicates the original image (right), reconstruction result with random sampling (middle),
and DPPs sampling (left).


	. Implementation details of DPPMask
	. ImageNet-100 setting
	. Greedy approximation performance
	. More discussion about relative works
	. Alignment versus diversity
	. Broader impact

