
Supplementary material for GTP-ViT: Efficient Vision Transformers via
Graph-based Token Propagation

A. Implementation optimizations
First, we note that both the spatial graph and semantic

graph are sparse graphs, with graph sparsity 8
N and M

N , re-
spectively. For ViT [3] and DeiT [10] models, the total
number of image tokens N is usually 196, which indicates
less than 5% non-trivial values in the two adjacency matrices.
As a result, the mixed graph is also a sparse graph whose
sparsity is no more than 8+M

N (less than 7% on average).
Therefore, we can store the graph in sparse tensors [8] and
perform sparse matrix multiplication to accelerate the graph
propagation in Sections 3.2.2 and 3.2.3. Besides, for batched
inputs that the sparse matrix multiplication does not sup-
port, we can use the scatter reduction operation to avoid the
dense matrix multiplication. Second, the threshold Ti for
sparsifying the semantic graph can be determined by finding
the M th largest value in the unsorted array Asemantic

i with a
complexity O(N) rather than sorting the whole array with a
complexity O(N logN).

B. Experiment settings
We provide the hyperparameter settings for the compared

methods in Tables 1 and 2. These hyperparameters are used
to control the reduced computational complexity for the
backbone ViT, ensuring fair comparisons.

C. Additional experiments
C.1. Larger ViT backbones

In the main submission, we have validated GTP’s effec-
tiveness on small to medium-sized ViT backbones. More-
over, we employ GTP on two large-size ViT backbones:
ViT-L [3] and EVA-L [4], which represent ViT backbones
with and without the [CLS] token, respectively. Since ViT-L
and EVA-L both have 24 layers, the maximum number of
propagated tokens P per layer is limited to 8. We also re-
produce the state-of-the-art ToMe [1] on these models and
present the comparisons in Table 3. It is worth noting that
ToMe consumes considerable GPU memory for computing
the cosine similarity in each layer. We omit the evaluation
on larger models (-H, -G) due to hardware constraints.

From Table 3, we point out that our GTP outperforms

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
76.4
76.6
76.8
77.0
77.2
77.4
77.6
77.8
78.0
78.2
78.4
78.6
78.8
79.0
79.2
79.4
79.6
79.8

To
p-

1 
Ac

cu
ra

cy
 (%

)

P=4
P=8
P=11
P=14

(a) DeiT-S

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
77.8
78.0
78.2
78.4
78.6
78.8
79.0
79.2
79.4
79.6
79.8
80.0
80.2
80.4
80.6
80.8
81.0
81.2
81.4
81.6
81.8
82.0

To
p-

1 
Ac

cu
ra

cy
 (%

)

P=4
P=8
P=11
P=14

(b) DeiT-B

Figure 1. Top-1 accuracy of GTP on ImageNet-1K [2] for vari-
ous αs. We evaluate the performance of GTP on both DeiT-S and
DeiT-B [10] without finetuning w.r.t. different α. For fair com-
parisons, we employ the same graph type for propagation and set
the attention sparsity static at 0.6 for DeiT-S and 0.5 for DeiT-B,
respectively. The findings in this experiment are consistent across
different settings.

ToMe in both model performance and efficiency. Such per-
formance difference is even more significant on ViT back-
bones without the [CLS] token. For instance, GTP achieves
85.4% top-1 accuracy at 212.0 image/second when taking
EVA-L as the backbone, surpassing ToMe’s 80.1% top-1
accuracy by a significant 5.3% at a similar inference speed.

C.2. Graph propagation hyperparameter α

In the graph summarization process Xs = Xk + αÂpXp,
we use α to control the magnitude of information broadcast
from propagated tokens Xp to kept tokens Xk. In this section,
we investigate the performance of GTP with respect to differ-
ent α and visualize the results in Figure 1. In general, as α
increases within the range of [0, 1], the corresponding accu-
racy first rises and then declines, reaching its peak between
0.2˜0.4 for DeiT-S and 0.1˜0.3 for DeiT-B. We explain this
phenomenon from two aspects. First, when α is approaching
0, the propagated information becomes trivial, leading to a
situation where the propagated tokens’ information is not
preserved. When α = 0, this process merely prunes tokens.
Secondly, as α increases, the propagated information grad-
ually dominates the original information of the remaining

1



Backbone Method Hyperparameter Approximate computational complexity
3.5 GMACs 3.0 GMACs 2.6 GMACs 2.3 GMACs

DeiT-S [10]

DynamicViT [9] base keep ratio ρ ρ = 0.8 ρ = 0.7 ρ = 0.6 ρ = 0.5
EViT [7] token keeping rate k k = 0.8 k = 0.7 k = 0.6 k = 0.5
Evo-ViT [11] selection ratio p p = 0.7 p = 0.5 p = 0.4 p = 0.3
Tri-Level [6] token keep ratio RT RT = 0.8 RT = 0.7 RT = 0.6 RT = 0.5
ToMe [1] token reduce r per layer r = 8 r = 11 r = 14 r = 16
ATS [5] ATS block layers layer 7 to 11 layer 6 to 11 layer 5 to 11 layer 3 to 11
GTP (ours) propagated tokens P per layer P = 8 P = 11 P = 14 P = 16

Table 1. Hyperparameter settings for the baseline methods, taking DeiT-S as the backbone.

Backbone Method Hyperparameter Approximate computational complexity
15.3 GMACs 13.1 GMACs 11.6 GMACs 9.8 GMACs 8.8 GMACs

DeiT-B [10]

DynamicViT [9] base keep ratio ρ ρ = 0.9 ρ = 0.8 ρ = 0.7 ρ = 0.6 ρ = 0.5
EViT [7] token keeping rate k k = 0.9 k = 0.8 k = 0.7 k = 0.6 k = 0.5
Evo-ViT [11] selection ratio p p = 0.8 p = 0.7 p = 0.5 p = 0.4 p = 0.3
Tri-Level [6] token keep ratio RT RT = 0.9 RT = 0.8 RT = 0.7 RT = 0.6 RT = 0.5
ToMe [1] token reduce r per layer r = 4 r = 8 r = 11 r = 14 r = 16
ATS [5] ATS block layers layer 9 to 11 layer 8 to 11 layer 6 to 11 layer 3 to 11 layer 1 to 11
GTP (ours) propagated tokens P per layer P = 4 P = 8 P = 11 P = 14 P = 16

Table 2. Hyperparameter settings for the baseline methods, taking DeiT-B as the backbone.

tokens, which results in an over-smoothing problem and
subsequently hinders performance.

C.3. The number of graph neighbours

We study the influence of the number of semantic neigh-
bours M on model performance and plot the accuracy in
Figure 2. For fair comparisons, we apply GTP on DeiT-S
and DeiT-B with static attention sparsity and alpha at 0.5
and 0.2, respectively. Figures 2(a) and 2(c) illustrate the
results obtained by only employing the semantic graph for
token propagation, with respect to different M . It can be
observed that when the number of propagated tokens P is
small (e.g., P = 4 or P = 8), increasing the semantic neigh-
bours would first slightly improves the accuracy and then
converges. However, when P becomes large (e.g., P = 14),
increasing the semantic neighbours may lead to a perfor-
mance drop. This can be attributed to the aggregation of
redundant information, where one kept token encapsulates
an excessive number of propagated tokens that may not be
semantically close to it. Figures 2(b) and 2(d) show that
integrating the semantic graph with the spatial graph stabi-
lizes the trend of accuracy, indicating the significance of the
spatial relationship in token summarization.

C.4. Computational complexity comparison

As stated in the Introduction section, ToMe [1] encounters
a computational bottleneck in the pair-wise token matching
process, whose computational complexity is proportional to
the feature dimensions and the square of the number of to-
kens. Compared with ToMe, GTP demonstrates faster infer-
ence speed and accomplishes better information preservation
results. In this section, we provide an in-depth analysis of

the enhancements in computational efficiency achieved by
GTP.

As a plug-and-play component, GTP inserts the token
summarization module between the MHSA layer and the
FFN layer in each ViT block, which behaves analogously
to ToMe. Therefore, when the number of eliminated tokens
is the same, the computational complexity of the backbone
model for GTP and ToMe should be the same. Consequently,
we only consider the additional computational costs (e.g.,
token matching, token selection and token propagation) in-
troduced by the two models in this analysis. We list the
denotations before the theoretical analysis as follows:

N : The total number of tokens in the backbone network.
Nl : The number of remaining tokens in layer l, where

Nl = N − (l − 1)M.

M : The number of eliminated tokens in each layer.
C : The dimension of features.
L : The total number of layers.
H : The number of heads.

(1)
For ToMe, the token matching processing first splits tokens
into two sets and then calculates the cosine similarity be-
tween each pair of tokens from the two sets. The com-
putational complexity for this process in layer l is 1

4N
2
l C.

Besides, ToMe merges M tokens in each layer, whose to-
tal computational complexity is MC in each layer. As a
result, the total additional computational complexity GToMe



Backbone Method
P = 0 P = 1 P = 2 P = 3 P = 4 P = 5 P = 6 P = 7 P = 8

Acc.
(%)

Speed
(img/s)

Acc.
(%)

Speed
(img/s)

Acc.
(%)

Speed
(img/s)

Acc.
(%)

Speed
(img/s)

Acc.
(%)

Speed
(img/s)

Acc.
(%)

Speed
(img/s)

Acc.
(%)

Speed
(img/s)

Acc.
(%)

Speed
(img/s)

Acc.
(%)

Speed
(img/s)

ViT-L [10] ToMe [1] 85.8 123.4 85.8 122.0 85.7 132.1 85.5 142.2 85.3 153.8 85.0 169.0 84.7 184.8 84.2 204.0 83.7 228.5
GTP (ours) 85.8 125.4 85.8 134.4 85.8 144.9 85.5 157.4 85.3 172.0 85.0 188.3 84.3 208.8 83.7 234.0

EVA-L [4] ToMe [1] 87.9 123.1 87.7 123.6 87.6 132.3 87.3 142.5 87.0 155.2 86.5 169.6 85.6 185.9 84.0 207.0 80.1 230.9
GTP (ours) 87.9 125.6 87.8 134.6 87.8 145.3 87.7 158.0 87.5 172.5 87.2 188.9 86.5 212.0 85.4 234.9

Table 3. Performance on larger ViT models. We validate GTP’s performance on two large-size ViT models, ViT-L [3] and EVA-L [4],
where ViT-L employs the [CLS] token while EVA-L does not have the [CLS] token. Since both models have 24 layers, we can eliminate at
most 8 tokens per layer. Bond font means better. GTP constantly outperform ToMe on large ViT models with and without the [CLS] token.

1 2 3 4 5 6 7 8 9 1011121314151617181920
The number of semantic neighbours

77.0
77.2
77.4
77.6
77.8
78.0
78.2
78.4
78.6
78.8
79.0
79.2
79.4
79.6
79.8

To
p-

1 
Ac

cu
ra

cy
 (%

)

P=4
P=8
P=11
P=14

(a) GTP on DeiT-S with semantic graph

1 2 3 4 5 6 7 8 9 1011121314151617181920
The number of semantic neighbours

77.0
77.2
77.4
77.6
77.8
78.0
78.2
78.4
78.6
78.8
79.0
79.2
79.4
79.6
79.8

To
p-

1 
Ac

cu
ra

cy
 (%

)

P=4
P=8
P=11
P=14

(b) GTP on DeiT-S with mixed graph

1 2 3 4 5 6 7 8 9 1011121314151617181920
The number of semantic neighbours

79.0
79.2
79.4
79.6
79.8
80.0
80.2
80.4
80.6
80.8
81.0
81.2
81.4
81.6
81.8

To
p-

1 
Ac

cu
ra

cy
 (%

)

P=4
P=8
P=11
P=14

(c) GTP on DeiT-B with semantic graph

1 2 3 4 5 6 7 8 9 1011121314151617181920
The number of semantic neighbours

79.0
79.2
79.4
79.6
79.8
80.0
80.2
80.4
80.6
80.8
81.0
81.2
81.4
81.6
81.8

To
p-

1 
Ac

cu
ra

cy
 (%

)

P=4
P=8
P=11
P=14

(d) GTP on DeiT-B with mixed graph

Figure 2. Top-1 accuracy of GTP with various numbers of semantic neighbours M . We evaluate the performance of GTP on both
DeiT-S and DeiT-B [10] without finetuning w.r.t. different numbers of semantically connected neighbours.

introduced by ToMe is calculated as

GToMe =

L∑
l=1

(
1

4
N2

l C +MC)

=
1

4
C

L∑
l=1

N2
l + LMC

=
1

4
C

L∑
l=1

(N − (l − 1)M)2 + LMC

=
1

4
C

L∑
l=1

(N2 − 2(l − 1)NM + (l − 1)2M2)

+ LMC

=
1

4
LN2C +

1

4
(L− L2)NMC

+ (
1

12
L3 +

1

12
L2 +

1

8
L)M2C + LMC

(2)

We then calculate the computational complexity for GTP.
GTP first constructs the semantic graph for an input image
after the token embedding layer with a computational com-
plexity N2C. Next, it selects tokens with a computational
complexity at most HNl in layer l. And finally, the to-
kens are propagated with computational complexity at most
(Nl −M)MC in layer l. Consequently, the total additional

computational complexity GGTP of GTP is

GGTP = N2C +

L∑
l=1

(HNl + (Nl −M)MC)

= N2C +

L∑
l=1

(H(N − (l − 1)M)

+ (N − (l − 1)M −M)MC)

= N2C + LHN + LMNC − 1

2
(L2 − L)HM

− 1

2
(L+ L2)M2C.

(3)

Given N = 197, L = 12, H = 6, C = 384 and M = 8
for DeiT-S, we can get GGTP ≈ 20.1MMACs, which is
smaller than GToMe ≈ 28.3MMACs. On DeiT-B where
N = 197, L = 12,M = 8, H = 12 and C = 768, we
observe that GGTP ≈ 40.5MMACs is much smaller than
GToMe ≈ 57.3MMACs. Figure 3 illustrates the additional
computational complexity change with respect to the total
number of tokens N and the feature dimensions C. It is
obvious that our GTP introduces far less additional compu-
tational complexity than ToMe, and the difference signifies
when N and C increase. It indicates the efficiency of GTP
on large-size ViTs whose feature dimensions may exceed
1024, as well as on ViTs for dense prediction tasks where
the number of tokens may be more than 1024.



30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

The feature dimensions

20

30

40

50

60

70

80

Co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 (M

M
AC

s)

ToMe
GTP

(a)
20

0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

The total number of tokens

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

Co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 (M

M
AC

s)

ToMe
GTP

(b)

Figure 3. Comparisons on the additional computational com-
plexities introduced by ToMe [1] and our GTP. We plot the
computational complexity (measured in MMACs) with respect to
the dimension of token features in (a) and the total number of tokens
in (b).

References
[1] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang,

Christoph Feichtenhofer, and Judy Hoffman. Token merging:
Your vit but faster. In ICLR, 2023. 1, 2, 3, 4

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In CVPR, 2009. 1

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 1, 3

[4] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu,
Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao.
Eva: Exploring the limits of masked visual representation
learning at scale. In CVPR, 2023. 1, 3

[5] Mohsen Fayyaz, Soroush Abbasi Koohpayegani,
Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and
Jürgen Gall. Adaptive token sampling for efficient vision
transformers. In ECCV, 2022. 2

[6] Zhenglun Kong, Haoyu Ma, Geng Yuan, Mengshu Sun,
Yanyue Xie, Peiyan Dong, Xin Meng, Xuan Shen, Hao Tang,
Minghai Qin, et al. Peeling the onion: Hierarchical reduction
of data redundancy for efficient vision transformer training.
In AAAI, 2023. 2

[7] Youwei Liang, GE Chongjian, Zhan Tong, Yibing Song, Jue
Wang, and Pengtao Xie. Evit: Expediting vision transformers
via token reorganizations. In ICLR, 2021. 2

[8] PyTorch. Torch.sparse, pytorch 2.0 documentation. https:
//pytorch.org/docs/stable/sparse.html,
2023. 1

[9] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision trans-
formers with dynamic token sparsification. In NeurIPS, 2021.
2

[10] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. In ICLR, 2021. 1, 2, 3

[11] Yifan Xu, Zhijie Zhang, Mengdan Zhang, Kekai Sheng, Ke
Li, Weiming Dong, Liqing Zhang, Changsheng Xu, and Xing
Sun. Evo-vit: Slow-fast token evolution for dynamic vision
transformer. In AAAI, 2022. 2

https://pytorch.org/docs/stable/sparse.html
https://pytorch.org/docs/stable/sparse.html

	. Implementation optimizations
	. Experiment settings
	. Additional experiments
	. Larger ViT backbones
	. Graph propagation hyperparameter 
	. The number of graph neighbours
	. Computational complexity comparison


