
Universal Semi-supervised Model Adaptation via Collaborative
Consistency Training Supplementary File

Zizheng Yan1,2* Yushuang Wu1,2* Yipeng Qin3 Xiaoguang Han1,2

Shuguang Cui1,2 Guanbin Li4,5†

1FNii, CUHKSZ 2SSE, CUHKSZ 3Cardiff University 4Sun Yat-sen University
5Research Institute, Sun Yat-sen University, Shenzhen

Contents

1. More Analysis 1
1.1. Augmentation Strategies. . . . . . . . . . . . 1
1.2. Robustness against Hyper-parameter τ . . . . 1
1.3. Accuracy of Common-Private Set Samples . 1
1.4. Pseudo Label Generation Strategy . . . . . . 1
1.5. Analysis of Class-wise Consistency . . . . . 2
1.6. Justification of Our F (·|θt) Pre-training

Method . . . . . . . . . . . . . . . . . . . 2
1.7. Justification of Choice between F (·|θs) and

F (·|θt) . . . . . . . . . . . . . . . . . . . . 2
1.8. Analysis of Hyper-parameters . . . . . . . . 2
1.9. Analysis of Performance Stability . . . . . . 3
1.10. Feature Visualization . . . . . . . . . . . . . 3

1. More Analysis
1.1. Augmentation Strategies.

We denote standard random resized crop and flip as weak
augmentation and RandAugment [2] as strong augmenta-
tion, and experimentally study how the performance of our
method changes with different augmentation combinations.
We conduct the experiments on the task of Real → Cli-
part and Real → Sketch of Domainnet. As Table 1 shows,
the weak-strong combination yields the best performance in
terms of H-score. We conjecture that the weakly augmented
view produces more stable predictions for pseudo labeling,
while training with the strongly augmented input prevents
the network from overfitting pseudo label noises.

1.2. Robustness against Hyper-parameter τ .

We explore the sensitivity of our method with respect
to the choice of hyper-parameter, i.e., threshold τ used in
sample-wise consistency regularization. As Table 2 shows,
our method (CCT) outperforms FixMatch [7] for all choices

*Equal contributions.
†Corresponding Author.

Table 1. H-score w.r.t. augmentation strategies in task R → C and
R → S on Domainnet.

x′ x′′ R → C R → S

Strong Strong 75.6 62.1
Strong Weak 60.0 56.7
Weak Weak 72.8 61.3
Weak Strong 77.7 66.8

Table 2. H-score w.r.t. threshold τ in task R → C on Domainnet.

Threshold τ
Method 0.35 0.5 0.65 0.8 0.95

FixMatch 66.9 65.7 67.9 70.4 68.6
CCT 73.7 73.5 73.4 76.3 77.7

of τ . Moreover, it can be observed that our CCT is less
sensitive to the thresholds compared with FixMatch [7]. In
addition, more analysis of hyper-parameters can be found
in the supplementary material.

1.3. Accuracy of Common-Private Set Samples

In addition to H-score, we also report the accuracy of
common and private set samples on Domainnet. As Table 3
shows, the accuracy of private set significantly outperforms
all compared methods. It is worth noting that i) the per-
formance gap between common set accuracy of FixMatch
and CCT is relatively small, ii) while for the private set ac-
curacy, the gap is significant larger, which implies that the
CCT can effectively improve the performance of F (·|θs) on
private set.

1.4. Pseudo Label Generation Strategy

We empirically validate multiple pseudo label generation
strategies, e.g., ensemble and weighted ensemble, where
ensemble refers to the strategy where pseudo labels are
generated by thresholding [F (x′|θs) + F (x′|θt)]/2, and
weighted ensemble refers to the strategy of thresholding
[wF (x′|θs) + (1 − w)F (x′|θt)], where w ∈ [0, 1] is com-
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Table 3. Accuracy of Common (aC) and Private (aP ) set on the DomainNet 5-shot setting using ResNet34 as the backbone.

R → C P → C C → S R → P S → P R → S Mean
Method aC aP aC aP aC aP aC aP aC aP aC aP aC aP

CE 73.6 47.9 72.2 47.4 65.5 46.8 67.3 50.4 67.3 51.4 65.0 41.4 68.5 47.6
MME 74.8 59.8 73.7 56.7 62.4 49.5 63.1 61.6 65.8 61.9 62.4 43.4 67.0 55.5
FixMatch 82.2 58.9 81.8 55.9 72.7 52.8 71.5 65.7 73.9 63.4 73.1 57.1 75.9 59.0
CCT 83.0 73.1 81.6 73.6 74.1 60.8 77.3 73.8 75.8 74.7 75.1 60.2 77.8 69.4

Table 4. Results of different pseudo label generation strategies for
sample-wise consistency on Domainnet

Consistency Loss R → C C → S

Ensemble 75.3 65.6
Weighted ensemble 75.4 65.6
Sample-wise 77.7 66.8

Table 5. Comparison of class-wise consistency with MIM and
MCC on Domainnet 5-shot setting

Method R → C C → S

MIM 55.2 51.0
MCC 65.8 59.0
Class-wise (ours) 70.6 60.6

Sample-wise + MIM 68.7 62.6
Sample-wise + MCC 71.7 64.4
CCT (ours) 77.7 66.8

Table 6. H-score of R → P and S → P on Domainnet 5 settings.

Method R → P S → P

RotPred 71.8 73.9
SCL+SimCLR 75.5 75.3

puted by the entropy of the two networks. As Table 4 shows,
our Lsample is more effective than the above methods.

1.5. Analysis of Class-wise Consistency

As we have mentioned in Section. 3.4, class-wise consis-
tency has much more merits than the previous regularization
functions like Mutul Information Maximization (MIM) [6]
and Minimum Class Confution (MCC) [4]. In addition, we
experimentally compare class-wise consistency with MIM
and MCC on Domainnet 5-shot setting. As Table. 5 shows,
class-wise consistency achieves much superior performance
than MIM and MCC.

1.6. Justification of OurF (·|θt)Pre-training Method

To justify our choice of the pre-training method, SCL [5]
+ SimCLR [1], for F (·|θt), we compare it with rotation
prediction [3] on Real → Painting and Sketch → Painting
of Domainnet. As shown in Table 6, our SCL [5] + Sim-
CLR [1] yields better results than rotation prediction [3].

Table 7. H-score on the Domainnet 5-shot setting.

Method R → C P → C C → S R → P S → P R → S Mean

F (·|θs) 77.7 77.4 66.8 75.5 75.3 66.9 73.3
F (·|θt) 77.9 77.4 66.7 75.5 75.1 66.8 73.2

Table 8. (a) Average H-score w.r.t. loss weight λ1 on the Office-
Home 5-shot setting. Note that λ2 is fixed to 0.5. (b) Average
H-score w.r.t. loss weight λ2 on the Office-Home 5-shot setting.
Note that λ1 is fixed to 1.

λ1 0 0.5 1 1.5

H-score 72.3 73.5 73.5 72.8

(a)

λ2 0 0.5 1 1.5

H-score 70.5 73.5 73.3 72.6

(b)

1.7. Justification of Choice between F (·|θs) and
F (·|θt)

As mentioned in the main paper, the performance of
F (·|θs) and F (·|θt) will converge to the same point af-
ter training and thus we simply choose F (·|θs) as the fi-
nal model. To support our choice, we show the H-score of
F (·|θs) and F (·|θt) on Domainnet in Table 7. It can be ob-
served that the performance of F (·|θs) and F (·|θt) are very
close, and F (·|θs) performs slightly better, which justifies
our choice.

1.8. Analysis of Hyper-parameters

The proposed CCT has three hyper-parameters, i.e. the
threshold τ , the loss weight of sample-wise consistency λ1,
and the loss weight of class-wise consistency λ2. In this
section, we study how λ1 and λ2 influence the performance
since τ has been studied in the main paper. We conduct the
experiments on Office-Home. As Table 8 shows, we achieve
the best performance when λ1 = 1 and λ2 = 0.5. It can
be observed that when λ2 = 0, i.e. without sample-wise
consistency, the performance is much lower, which demon-
strates the efficacy of our sample-wise consistency. Further-
more, it can be observed that the model is not sensitive w.r.t
λ1 and λ2.



(a) MME. (b) FixMatch. (c) CCT.

Figure 1. TSNE [8] visualization of the learned features of common (top) and private (bottom) sets samples respectively. We randomly
sample 20 classes for both sets in task R → C on Domainnet.

Table 9. Mean and standard deviation of H-score over five runs on
Domainnet in the 5-shot setting. Note that Avg denotes the Mean
and standard deviation of the mean H-score over five runs.

Method R → C P → C C → S R → P S → P R → S Avg

Mean 77.8 77.4 66.4 75.1 75.4 66.3 73.1
STD 0.4 0.3 0.3 0.8 0.6 0.4 0.2

1.9. Analysis of Performance Stability

We investigate the performance stability of the proposed
CCT in multiple runs. Table 9 shows the results of aver-
aged H-score and the standard deviation of five runs on Do-
mainnet in the 5-shot setting. The standard deviation of the
averaged H-score is very small, i.e. 0.2, demonstrating the
stability of our CCT.

1.10. Feature Visualization

In addition to the quantitative results, we also show the
qualitative results of the learned features by TSNE [8]. As
Fig. 1 shows, the features of CCT are more compact and
form into well-separated clusters in both common and pri-
vate sets, which verifies that our CCT learns more discrim-
inative features.
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