
Appendix

A. Illustration of SAM-based Quasi-superpixel
Classification and Seed Generation
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Figure S1. Procedures for SAM-based quasi-superpixel classifi-
cation and seed map generation, where “Sp.” is the abbreviation
of “quasi-superpixel”. On quasi-superpixel score maps, brighter
colors indicate higher scores.

We illustrate the computation process of SAM-based
quasi-superpixel classification and seed map generation in
figure S1, which depicts gathering quasi-superpixel fore-
ground scores from GradCAMs, computing background
score and determining the semantic class of each quasi-
superpixel and pixel. Please refer to Section 4.2 of the paper
for more algorithm details.

B. Framework Efficiency
In Table S1, we compare our time costs and parameter

size with some related works. Our method has the fewest
learnable parameters except for CLIP-ES [9], which is our
training-free baseline. Similarly, our time spent on CAM
generation is minimal except for CLIP-ES. Furthermore,
our post-processing refinement cost is negligible compared
to all other methods, which is a useful feature for online re-

finement during training. Note that we did not include the
time required for SAM-based quasi-superpixel generation,
as superpixels only need to be generated once for each train-
ing set and can be reused for all subsequent experiments.
Compared to CLIP-ES, we only consume a little additional
training time and parameter size. However, in return, we
achieve a considerable performance boost and eliminate the
manual selection of prompt context.

C. More Final Segmentation Results
In this section, we trained additional combinations of

segmentation networks and backbones using the fine seeds
generated by our framework. We present the results on
PASCAL VOC [6] and MS COCO [8] in Tables S2 and S3,
which also include the results from Tables 7 and 8 of the
paper.

For PASCAL VOC, there is a slight performance dif-
ference between DeepLab V2 [1] and DeepLab V3+ [2].
Switching from V3+ to V2 does not affect the conclusions
drawn in Section 5.4 of the paper. Mask2Former [3] using
a larger pre-train dataset and a heavier backbone leads to a
few improvements on PASCAL VOC. Additionally, the ex-
periments conducted on MS COCO demonstrate that Swin-
B [11] and Swin-L perform similarly, while pretraining on
ImageNet-21K [5] significantly improves the performance.

D. Text-to-Semantic-Mask Usage
SAM [7] attempts to generate masks using CLIP text fea-

tures as prompts (denoted as text-to-mask). However, its
performance is not satisfactory. One solution to make SAM
accept text prompts is combining Grounding-DINO [10],
which obtains object bounding boxes based on text inputs
and then uses the object boxes to prompt SAM and gen-
erate instance masks. We noticed that the seed genera-
tion networks in WSSS, such as CLIP-ES [9] and ViT-
PCM [13], can be seen as text-to-semantic-mask methods
for the specific data domain. Such methods require training
with data that have image-level labels. During inference,
the seed generation network is prompted by text (class la-
bel) and obtains semantic segmentation masks. We report
the performance of our seed generation framework for text-
to-semantic-mask in Table S4. We also compare adopting
CLIP-ES [9] for text-to-semantic-mask. As can be seen,
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Table S1. Time and learnable parameters size of different methods for seed generation on PASCAL VOC 2012 trainaug set with 10,582
images. We report the size of learnable parameters in the “Param. Size” column. Post-processing refinement methods include applying
dense CRF (CRF), training affinity networks (RW), using class-aware attention-based affinity (CAA), and utilizing our SAM-based seeding
module (SAMS). The time unit is hour and the parameter size unit is MB. For MCTformer, the inference and CRF processes are combined.

Method CAM Generation Post-Processing Total Time Param. SizeTrain Inference CAA SAMS CRF RW
CLIMS [14] 2.1 0.3 - - 0.2 6.5 9.1 183M
MCTformer [15] 0.5 2.5 - - - 3.0 6.0 121M
CLIP-ES [9] - 0.4 0.01 - 0.2 - 0.6 -
Ours 1.9 0.4 0.01 0.01 - - 2.3 0.8M

our method achieves much higher performance at the cost
of additional training and inference of SAM.

Compared to combining Grounding-DINO [10] with
SAM, our method that combines prompt-learnable CLIP
has some limitations, such as not supporting free-form
text input, cannot perform instance segmentation, and re-
quiring fine-tuning on specific domains. However, on the
other hand, CLIP [12] supports more semantic classes com-
pared to Grounding-DINO. Furthermore, when fine-tuning
is required for new classes or specific data distributions,
our framework only requires image-level annotations rather
than object box annotations. We hope to explore this further
in future work.

Table S2. Performance comparison of our method with different fi-
nal segmentation networks and backbones on PASCAL VOC 2012
val sets. We denote segmentation network type at “Seg.” column.
The ‡ indicates backbone pretrained on ImageNet-21k [5].

Seg. Backbone mIoU
DeepLab V2 R101 76.7
DeepLab V3+ R101 77.3
Mask2Former Swin-B 80.3
Mask2Former Swin-B‡ 81.4
Mask2Former Swin-L‡ 82.6

Table S3. Performance comparison of our method with different
final segmentation networks and backbones on MS COCO 2014
val set. We denote segmentation network type at “Seg.” column.
The ‡ indicates backbone pretrained on ImageNet-21k [5].

Seg. Backbone mIoU
DeepLab V3+ R101 48.6
Mask2Former Swin-B 51.8
Mask2Former Swin-B‡ 55.1
Mask2Former Swin-L‡ 55.4

E. More Ablation Studies on Training Loss
The values of most CLIP logits are situated in the sat-

urated range of the sigmoid, leading to inefficient training

Table S4. Performance comparison of text-to-semantic-mask us-
age on PASCAL VOC 2012 val sets.

Method mIoU
CLIP-ES [9] 73.8
Ours 80.6

by binary cross entropy loss. Moreover, we use positive
class Softmax-GradCAMs with sigmoid activation to cal-
culate probabilities for pixel-wise cross entropy loss. Note
that we only obtain the Softmax-GradCAMs of positive
classes, so probabilities can only be derived from sigmoid
rather than softmax. However, due to CLIP parameters be-
ing frozen, the absolute values of Softmax-GradCAMs are
trapped within their initial small range (from 0 to 10−3),
and sigmoid probabilities stay near 0.5. This prevents the
convergence of cross entropy loss and weakens training ro-
bustness.

In this section, we attempted to scale CLIP logits or
Softmax-GradCAMs to a reasonable range with a set of
linear scaling parameters, which are adjusted manually or
learned automatically. The results are shown in Table S5,
indicating that both manual and automatic scaling improved
performance to some extent. However, our multi-label con-
trastive and CAM activation losses still achieved the best
performance without introducing any additional parame-
ters. In addition, our CAM activation loss still outperforms
pixel-wise cross entropy with scaled input by a large mar-
gin. This is because the CAM activation loss aligns the su-
pervision signal and seed generation process. During seed
generation, Softmax-GradCAM is truncated with 0 and then
subjected to min-max normalization. Then, values close to
1 are considered foreground candidates, while values close
to 0 represent the background. Similarly, the CAM activa-
tion loss expects CAM values in the foreground to be close
to the maximum response, i.e., close to 1 after normaliza-
tion, while background values should be below 0.



Table S5. The performance evaluation of employing different
multi-label classification and segmentation loss on PASCAL VOC
2012 trainaug set. LBCE stands for the binary cross entropy loss
widely employed by other WSSS methods. LCE represents the
pixel-wise cross entropy loss whose probabilities are obtained by
inputting CAM activation values into a sigmoid function. “Man-
ual Scale” applies manually adjusted linear scaling parameters to
scale the CLIP logits or Softmax-GradCAMs, and “Auto Scale”
scales values with learnable scaling parameters.

LBCE LMCL LCE LCAL Manual Scale Auto Scale mIoU(%)
✓ 65.9
✓ ✓ 70.7
✓ ✓ 70.1

✓ 71.5
✓ ✓ 52.1
✓ ✓ ✓ 68.8
✓ ✓ ✓ 64.6
✓ ✓ 74.2

F. Refine Full-Supervised Results with SAM-
based Seeding Module

Table S6. The effects of refining the full-supervised final segmen-
tation results using SAMS or CRF on PASCAL VOC 2012 val set.

Backbone Post-Processing mIoU(%)

DeepLab V3+
- 79.5
CRF 78.4-1.1
SAMS 80.9+1.4

Mask2Former
- 86.0
CRF 84.7-1.3
SAMS 85.5-0.5

In Table 3 of the paper, attempts are made to refine the
segmentation networks trained with seed by dense CRF or
our SAM-based seeding module (SAMS). In this section,
we conduct the same experiments on fully supervised con-
ditions to demonstrate that the utility of SAMS is not lim-
ited to WSSS but can be applied to various semantic seg-
mentation sub-tasks. The experimental results are presented
in Table S6. On DeepLab V3+, SAMS achieves the same
performance improvement as WSSS, while CRF remains
ineffective. However, SAMS does not bring further im-
provements when employed to the high baseline results ob-
tained by Mask2Former.

G. More Implementation Details
We implement our proposed method in PyTorch. All of

our experiments are conducted on a single RTX 3090 GPU
with 24GB memory. When training the proposed method
for seed generation, we enable the second-order deriva-
tive to ensure that the gradients of softmax-GradCAM are
propagated correctly. Additionally, we detach the activa-
tion weights (Eq. 2 of paper) during softmax-GradCAM
computation. For the final segmentation network, we

train DeepLab V3+ [2] with a batch size of 16 and
Mask2Former [3] of 4. Moreover, 120 epochs are trained
on PASCAL VOC and 32 on MS COCO. Other training and
inference settings, such as the optimizer, scheduler, learn-
ing rate, etc., are set following implementations of MM-
Segmentation [4].
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Figure S2. The GradCAMs generated by classification (Cls.) and
segmentation (Seg.) tasks. The target class is labeled on the top.
Note that CAA are not employed for a clarity comparison.

H. More Qualitative Results
In Figure S2, we provide more results of GradCAMs

generated by classification and segmentation tasks. We can
observe that GradCAMs of the segmentation task are more
complete and less likely to spread to background region,
which proves the effectiveness of our coarse-to-fine design.

In Figure S3, we visualize the original SAM masks and
our SAM-based quasi-superpixel, together with seeds gen-
erated base on them. It can be observed that our SAM-based
quasi-superpixel tends to use as few masks as possible to
identify the entire instance at once, with minimal overlap
between masks. Therefore, seed based on quasi-superpixel
is more effective at segmenting complete objects and ensur-
ing consistent and accurate semantics within each instance.

In Figure S4, we visualize the seeds generated from
dense CRF and our SAM-based seeding module. We ob-
serve that SAMS can generate clearer and more accurate
boundaries. When multiple foreground classes overlap and
occlude each other, CRF is prone to confusion at the bound-
ary, whereas SAMS avoids such confusion. Finally, for
elongated or color-variant objects, CRF often fails to prop-
agate CAM throughout the entire object, while SAMS con-
sistently identifies the complete object.



Image + GT SAM Masks Sp. Seed w/ Sp.Seed w/ SAM Masks

M
or

e 
co

m
pl

et
e 

on
 fo

re
gr

ou
nd

Le
ss

 c
on

fu
si

on
 w

ith
in

 fo
re

gr
ou

nd
s

Figure S3. The seeds generated from original SAM masks and our SAM-based quasi-superpixel (Sp.).
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Figure S4. The seeds generated with different post-processing refinement methods, including dense CRF (CRF) and our SAM-based
seeding module (SAMS).
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