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Supplementary Materials

Figure 1. Pairs with ambiguous semantic correspondence in
DPST. For each pair, the left is source, the right is reference.

Figure 2. Some annotation examples for DPST. For each group,
the top-left, top-right and bottom are source, reference, and
ground-truth, respectively.

A. More details of Annotation on DPST

We adopt a commonly-used public dataset DPST [5] for
annotation instead of cherry-picking image pairs with bet-
ter results. The original DPST has 59 pairs of images. To
ensure the objectiveness of our annotation, we first discard
some pairs that have ambiguous semantic correspondence,
which may lead to multiple colorization solutions, such as
the pairs in Figure 1. The rest 53 pairs have definite seman-
tic correspondence, leading to definite optimal solutions. In
total, we provide ground-truth annotations at three levels:
basic, global, and local. At the basic level, adjustments are
made using only the Light and Color sliders. At the global
level, all sliders in the Edit panel are allowed. As for the lo-
cal level, segmentation is introduced to achieve local edits.
The leveled ground truth annotations could be used to eval-
uate various stylization and colorization tasks. In this work,
we evaluate and compare methods based on annotations at
the local level, as also mentioned in the main paper. Fig-
ure 2 shows more examples of our annotations at the local
level. Note that the annotations are isolated from algorithm
design: our method is settled beforehand, and the annota-
tors were unaware of our method during annotation, which
assures the objectiveness of our annotation.

B. More training details

• Generator finetuning: We use image pairs from the
Discover dataset to finetune the generator and train w-
Encoder jointly. We use the ColorJitter function of Py-
Torch with brightness = contrast = saturation = (0.5, 2),
and hue = (-0.2, 0.2) for random color augmentation on
discover to enlarge the color difference of image pairs and
simulate more color transformations. The batch size is 8.

It takes nearly 25k steps and 6 hours to finetune.

• W-Encoder training: Any image dataset without annota-
tion can be used to train W-Encoder since it does not re-
quire paired images. For convenience, we use the Dis-
cover dataset. The batch size is set as 16. It takes nearly
6k steps and 2 hours to train W-Encoder.

C. More experiments

C.1. User Study

We also conduct a user study for different methods’ re-
colorization results (with RGB source as input) on DPST
datasets. To ensure the objectiveness of our user study, we
first discard one pair (i.e., the left pair of Figure 1, since
the contents of the images in this pair are extremely mis-
matched, which makes it hard for users to judge). The right
pair of Figure 1 is kept, although the semantic correspon-
dence is uncertain (i.e., one-to-many), but the color of the
sofa in a desirable result should lie in the colors of the so-
fas in reference. Then we conduct our user study on all 58
pairs instead of cherry-picked image pairs. We select 5 rep-
resentative previous methods with relatively stronger per-
formance (i.e., Gray2color [4], PhotoWCT [3], WCT2 [7],
MAST [2] and PhotoWCT2 [1]) as well as our method for
the user study. Moreover, to lighten users’ workload and
make results more reliable, we randomly divide 58 pairs
into two subsets, each containing 29 pairs. We repeat the
dividing operation 7 times and get 14 subsets in total. The
subsets are then presented to 14 users (one subset for each).
The users are asked to choose the best one from the results
of different methods, which are presented anonymously in
a random order, based on the following criterion: (1) The
proximity of global style and color of semantic-related re-
gions between reference and result (2) The degree of arti-
facts. The former is our top priority. Finally, we calculate
the user-assigned scores of the results from different meth-
ods. As reported in Table 1, our method also outperforms
previous methods by a large margin.

C.2. More analysis of self-reconstruct latent code

As mentioned in Sec 3.3 of the main paper, we find that
for reconstructing an individual image with w0 from an-
other image, the error is lower when those images have a
similar style to the individual image. An example is shown
in Figure 4. For images with a similar style (i.e., setting
sun) as the source, their w0 is more similar to the source.
Additionally, when using their w0 to reconstruct the source,
the reconstruction error is lower, further demonstrating the
relation between w0 and global style.
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Table 1. Statistics of the user study on DPST results (%)

Methods Gray2color PhotoWCT WCT2 MAST PhotoWCT2 Ours
Score ↑ 1.7 8.1 8.1 2.7 24.9 54.5

Source Reference PhotoWCT

MAE=56.1,LPIPS=0.56

WCT2

MAE=34.2,LPIPS=0.53

MAST

MAE=28.4,LPIPS=0.52

Ours

MAE=18.9,LPIPS=0.14

MAE=19.0,LPIPS=0.43 MAE=15.2,LPIPS=0.16 MAE=30.2,LPIPS=0.42

Figure 3. Results of photorealistic stylization methods without and with segmentation. The 1st row contains results without segmentation,
and the sub-figure on the top-left of the source is our annotated ground truth. The 2nd row shows results of photorealistic stylization
methods with segmentation.

Figure 4. Reconstructing an individual image (source) with w0

from another image: the values above each image are the cosine
similarities between its w0 and the source’s w0, and the value be-
low is the reconstruction error (at a scale of 255) of source by the
w0 from that image.

Table 2. Quantitative ablation study of training dataset.

Training Dataset COCO Discover COCO+Discover
MAE↓ 28.91 27.8 27.34

LPIPS ↓ 0.2561 0.2267 0.2264

C.3. Influence of training dataset

Finally, we conduct quantitative ablation for the training
dataset of the W-predictor. As shown in Table 2, Discover
has a more significant influence on the performance of the
W-predictor. We argue the reason is that the image pairs of
Discover contain more various color transformations. With
COCO only to train, our methods still achieve competitive
performance.

(a) One step

(b) Two step

Figure 5. Comparison between one step dense correspondence and
two step.

C.4. Comparison to photorealistic stylization works
with segmentation

As mentioned in the main paper, previous photorealistic
stylization works require segmentation maps to ensure per-
formance. As shown in Figure 3, under such difficult pairs,
their performance is ensured only with the help of segmen-
tation.

C.5. Failure case and further improvement

In our work, the semantic correspondences between
source and reference are based on the cross-attention of
high-level VGG features, which may be inaccurate. Al-
though the random mask strategy we adopted during train-
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Source Reference α = 0.5 α = 0.75 α = 1 α = 1.25

Figure 6. Result of interpolation.

IS

IR

Result

User guidance
Transfer color

Keep unchanged

Figure 7. User-guided colorization with our method.

ing can help significantly alleviate the effect of inaccurate
correspondence, our result is less satisfying in a few scenes
a severe correspondence mistake exists. As shown in 5 (a),
the color of the shadow under the car of reference is trans-
ferred to the grass under the car of the source by mistake
due to the inaccurate correspondence by the VGG feature.
Instead of utilizing a more accurate model for correspon-
dence to improve. Here we reveal the two-step scheme pro-
posed in the user-guided colorization has the potential to
improve the performance of our method under such scenes.
In detail, we decompose the one-step cross-attention into
two steps: sparse to dense and coarse to fine. For the first
step, we manually mask some false corresponded regions of
the source (i.e., the grass under the car) and only calculate
cross-attention for other regions. Then for the second step,
we use self-attention to fill the masked regions. In detail,
the warped color feature W̃0R is calculated by

W̃0R = Hard(AS⊙M.T )Ŵ0R , Ŵ0R = Hard(M⊙AC)W0R

(1)
in which AC , AS and M (HW × 1) are cross-attention
matrix, self-attention matrix and mask, respectively. Note
that we use high-level VGG feature (i.e., relu5 1) to calcu-
late cross-attention while using low-level VGG feature (i.e.,
relu3 1) to calculate self-attention, as the former mainly
characterizes high-level semantic information such as cat-
egory, while the latter mainly characterizes low-level se-
mantic information such as texture. The texture of two
objects with the same category from two images may be
different, but the texture of different regions of an object
itself is usually consistent. As shown in Figure 5 (b), the
result is improved. Our future study will recognize the re-
gions that tend to get inaccurate correspondence automati-
cally and then mask them during cross-attention.

C.6. User-guided colorization

As colorization for foreground objects relies on the cor-
respondence from VGG features, our methods will not

Source Reference Online by WOnline by w

Figure 8. Online stylization results.

transfer colors for semantically unrelated regions (e.g.,
clothes to cars). Fortunately, we offer a user-guided ver-
sion of our method for such cases. As illustrated in Figure
7, one can assign correspondence manually by clicking the
matched regions to force color transferring at will. Figure
7 shows the user-guided colorization result of transferring
the clothes’ orange in IR to the car in IS while keeping the
colors of the clothes and floor in IS unchanged. In detail,
we provide two types of user guidance: 1) color transferring
between regions of source (IS) and reference (IR), and 2)
keeping the color of the source’s regions unchanged. The
former is recorded by a sparse binary cross-attention matrix
AC , while the latter is recorded by a binary diagonal matrix
AU . Specifically, we set AC(i, j) = 1 when a user specifies
a color transferring between IR’s ith position and IS’s jth
position. In addition, AU (i, i) = 1 if the user chooses to
keep IS’s ith position unchanged. Accordingly, we alter the
W̃0R calculation to two steps:

W̃0R = Hard(AS⊙c)Ŵ0R , Ŵ0R = ASW0R+AUW0S

(2)
where Hard() is the hard activation operation (equation 5
in the main paper), c = sum(AC + AU , 1) is the indica-
tor of assigned patches in IS , and AS is the self-attention
matrix of IS calculated by AS(i, j) = ⟨FS(i), FS(j)⟩. The
first step assigns correspondence according to the user’s an-
notations and obtains a sparse warped feature Ŵ0R . In the
second step, following the continuity constraint that adja-
cent patches of an object should be transformed similarly,
we propagate assigned patches’ color to semantic-related
regions and obtain the final dense W̃0R by warping Ŵ0R

with a hard-masked self-attention matrix.

C.7. Online stylization

Since our proposed w0 loss could measure the global
style difference between two images, it provides us with
an alternative solution to transfer global style in an online
fashion. In such cases, there is no need to train W-predictor;
instead, we iteratively optimize the 1d latent code w or 2d
latent maps W to minimize the w0 loss between IP and
IR. As shown in Figure 8, both w and W can help trans-
fer global styles, which verifies the effectiveness of our w0

loss. However, the result with W has severe artifacts be-
cause the continuity constraint of W is not guaranteed in
online fashion.
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Source Result W1 W2 W3

Figure 9. Visualization of different level maps of W.

C.8. Colorization interpolation

Following SpaceEdit [6], we also design and implement
an interface that let users adjust the strength of colorization
by interpolating the latent code:

W′ = W0S + α(W − W0S ) (3)

where W0S ,W,W′ are the self-reconstruct latent maps of
source, predicted latent maps, and interpolated latent maps,
respectively. α is used to control the strength. The col-
orization results for different α’s are shown in Fig. 6. As α
increases, the strength of colorization also increases.

C.9. Visualization of W predicted by PW

We visualize different levels {W1,W2,W3} of W via
PCA in Figure 9. From W1 to W3, the colorization outputs
become increasingly fine-grained, which reveals the reason
that multi-level W outperforms single map W.
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