
Supplementary Materials for
PolyMaX: General Dense Prediction with Mask Transformer

Supplementary Materials
In the supplementary materials, we provide additional

information as listed below:

• Sec. A provides detailed training protocol used in the
experiments.

• Sec. B provides additional ablations studies.

• Sec. C provides more visualizations of (1) model predic-
tions, (2) failure modes, (3) learned probability distribu-
tion maps, and (4) our generated high-quality pseudo-
labels for Taskonomy semantic segmentation.

A Training Protocol
The training configurations of PolyMaX closely follow

kMaX-DeepLab, including the regularization, drop path [3],
color jitting [2], AdamW optimizer [4, 7] with weight decay
0.05, and learning rate multiplier 0.1 for backbone. Addi-
tionally, for depth estimation and surface normal, we follow
the data preprocessing in [6], except that we disable random
scaling and rotation for surface normal.

B Additional Ablation Studies
Impact of Cluster Granularity We analyze the im-

pact of cluster granularity (i.e., K cluster centers) for depth
estimation and surface normal, which are presented in Tab. 1
and Tab. 2. Note that, we skip this analysis for semantic seg-
mentation, as we can simply assign the number of clusters as
the number of classes. In both Tab. 1 and Tab. 2, we observe
that the cluster granularity does not have a significant impact
on the model performance on either benchmarks. Among
the different cluster settings, 16 clusters and 8 clusters per-
form the best for depth estimation and for surface normal,
respectively.

K RMS ↓ A.Rel ↓ Log10 ↓ δ1 ↑ δ2 ↑ δ3 ↑
4 0.2544 0.0689 0.0295 96.65 99.53 99.91
8 0.2578 0.0691 0.0296 96.64 99.58 99.89

16 0.2499 0.0670 0.0288 96.90 99.58 99.90
32 0.2520 0.0685 0.0293 96.44 99.56 99.91
64 0.2537 0.0688 0.0295 96.77 99.61 99.90

Table 1. Impact of number of clusters (K) on depth estimation.

K Mean ↓ Med ↓ RMS ↓ δ1 ↑ δ2 ↑ δ3 ↑
4 13.10 7.075 0.2046 65.74 82.19 87.74
8 13.09 7.117 0.2040 65.66 82.28 87.83

16 13.15 7.111 0.2051 65.70 82.17 87.73
32 13.11 7.075 0.2048 65.75 82.23 87.77

Table 2. Impact of number of clusters (K) on surface normal.

C Additional Visualization
Model Predictions In Fig. 1, we show more model pre-

dictions of semantic segmentation, depth estimation, and sur-
face normal prediction. As shown in the figure, our proposed
PolyMaX can capture fine details on scenes with complex
structures.

Failure Modes To better understand the limitations of
the proposed model, we also look into the failure modes.
As shown in Fig. 2, PolyMaX struggles to predict the depth
and surface normal for transparent and reflective objects,
which are the most challenging issues in the tasks of depth
and surface normal estimation. The difficulties can also
be reflected by the unreliable ground-truth annotations for
those cases. In Fig. 3, our model sometimes predicts over-
smoothed depth and surface normal results. The findings
of [1, 8] (e.g., a better loss function) may alleviate this issue,
which is left for future exploration.

Probability Distribution Maps We provide additional
visualizations of the learned probability distribution maps
for depth estimation and surface normal prediction in Fig. 4
and Fig. 5, respectively. As shown in the figures, the learned
probability distribution maps effectively cluster pixels for
different distances (for depth task) or angles (for surface
normal task).

Taskonomy Pseudo-Labels In Fig. 6, we show addi-
tional visualization of the generated high-quality pseudo-
labels for Taskonomy semantic segmentation.



input sem seg pred. ground-truth depth pred. ground-truth normal pred. ground-truth

Figure 1. Visualization of model inputs and outputs for semantic segmentation, depth estimation and normal prediction. PolyMaX
is capable of capturing fine details on scenes with complex structures. Interestingly, as shown in the bottom row, PolyMaX can even
reasonably estimate the depth for the glass door, where depth models typically struggle.
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Figure 2. [Failure mode] PolyMaX still has difficulties with correctly predicting the depth and surface normal for transparent and reflective
surfaces (e.g. mirror in first row, glass in second row). These are well-known challenges for such tasks, especially the ground-truths in these
scenarios are also often unreliable, as shown in these examples.
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Figure 3. [Failure mode] Although PolyMaX achieves superior performance on all three benchmarks on NYUD-v2 dataset, we observe that
it still suffers from the over-smoothness issue for depth estimation and surface normal tasks, which other prior works [1, 8] attempt to tackle.
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Figure 4. Additional visualization of probability distribution maps for depth estimation. Despite of the redundancy in the 16 probability
distribution maps, the unique ones clearly demonstrate that the pixels are clustered as closest, mid-range, and furthest distances, which
validate the effectiveness of PolyMaX with cluster-prediction paradigm.
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Figure 5. Additional visualization of probability distribution maps for surface normal prediction. These probability maps highlight
regions with different angles, demonstrating PolyMaX is capable of clustering pixels based on the normal directions.
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Figure 6. Additional visualization of Taskonomy pseudo-labels: ours (middle) vs. original ones by Li et al. [5] (bottom). Our
pseudo-labels demonstrate higher quality than the existing ones.
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