
Supplementary Material for
SimpliMix: A Simplified Manifold Mixup for Few-shot Point Cloud Classification

Minmin Yang, Weiheng Chai, Jiyang Wang, Senem Velipasalar
Syracuse University

{myang47, wchai01, jwang127, svelipas}@syr.edu

1. Details about 3D Point Cloud Backbones
In this section, we present more structural details about

how we incorporate SimpliMix into the backbones de-
ployed in Section 4 of our main paper.

ViewNet [1] ViewNet is a projection-based backbone. It
consists of two branches: the projection feature learning
branch and the point feature learning branch. The projec-
tion feature learning branch accepts the input depth images
and processes them independently using a sequence of con-
volutional layers. The point feature learning branch learns
depth image features based on the output of View Pooling
module, which combines different projected plane combi-
nations into five groups and performs max-pooling on each
of them. We only incorporate the SimpliMix into the pro-
jection feature learning branch for simplicity as shown in
Fig. 1 below.

DGCNN [2] DGCNN is a point-based network, which
consists of four EdgeConv layers. The EdgeConv acts on
the k-nearest neighbor graphs of point features and gen-
erates edge features. Fig. 2 below shows possible places
where SimpliMix may be incorporated into DGCNN.

2. Details about Datasets
In this section, we provide more details about the

datasets used in our experiments. First, we present
the correspondence between class IDs and class names
for ModelNet40-FS and ModelNet40-C-FS in Tab. 1 and
ScanObjectNN-FS in Tab. 2. Then, we provide the class
details of cross-domain experimental setups in Tab. 3 and
Tab. 4.

3. Pseudocode for QMix and SQMix
Two alternatives for SimpliMix are QMix and SQMix.

The QMix only mixes query samples and leaves support
samples as they are. The SQMix randomly shuffles the
classes, and makes sure that samples from one set are mixed

ID Class Name ID Class Name ID Class Name ID Class Name
0 airplane 10 cup 20 laptop 30 sofa
1 bathtub 11 curtain 21 mantel 31 stairs
2 bed 12 desk 22 monitor 32 stool
3 bench 13 door 23 night stand 33 table
4 bookshelf 14 dresser 24 person 34 tent
5 bottle 15 flower pot 25 piano 35 toilet
6 bowl 16 glass box 26 plant 36 tv stand
7 car 17 guitar 27 radio 37 vase
8 chair 18 keyboard 28 range hood 38 wardrobe
9 cone 19 lamp 29 sink 39 xbox

Table 1. Class IDs and class names for ModelNet40-FS and
ModelNet40-C-FS.

ID Class Name ID Class Name ID Class Name
0 bag 5 desk 10 bed
1 bin 6 display 11 pillow
2 box 7 door 12 sink
3 cabinet 8 shelf 13 sofa
4 chair 9 table 14 toilet

Table 2. Class IDs and class names for ScanObjectNN-FS dataset

ShapeNetCore-XFS → ScanObjectNN
Dataset Domain Name of class

ShapeNetCore-XFS Source

airplane, basket, bathtub, bench, bicycle,
birdhouse, bottle, bowl, bus, camera, can, cap,

car, clock, keyboard, dishwasher, earphone, faucet,
file cabinet, guitar, helmet, jar, knife, lamp, laptop,
loudspeaker, microphone, microwaves, motorbike,
mug, piano, pistol, flowerpot, printer, remote, rifle,
rocket, skateboard, stove, telephone, tower, train,

watercraft, washer

ScanObjectNN Target
bag, bin, box, cabinet, chair, desk, display,

door, shelf, table, bed, pillow, sink, sofa, toilet

Table 3. Details of classes included in the cross-domain experi-
ments with ShapeNetCore-XFS as the source domain and ScanOb-
jectNN as the target domain.

with samples from the same set. For example, if class A is
mixed with class B, then all the support (query) samples be-
longing to class A are mixed with support (query) samples
belonging to class B. We provide the pseudocode for QMix
and SQMix in Algorithm 1 and Algorithm 2 below.



Figure 1. The structure of the point feature learning branch in ViewNet. We point out the possible places where the SimpliMix may be
applied. The feature map D6 is further processed by additional layers, which are ignored in the figure.

Figure 2. The architecture of DGCNN. We point out the possible places where SimpliMix may be applied.

ModelNet40-XFS → ScanObjectNN
Dataset Domain Name of class

ModelNet40-XFS Source

airplane, bathtub, bottle, bowl, car, cone,
cup, curtain, flower pot, glass box, guitar,

keyboard, lamp, laptop, mantel, nightstand,
person, piano, plant, radio, range hood, stairs,

tent, tv stand, vase, xbox

ScanObjectNN Target
bag, box, desk, pillow, sofa, bed, cabinets,

display, shelves, table, bin, chair, door, sink, toilet

Table 4. Details of classes included in the ModelNet40-XFS,
which is the source domain dataset, and ScanObjectNN, which
is the target domain dataset for cross-domain experiments. The
ModelNet40-C-XFS has the same classes as the ModelNet40-
XFS.

References
[1] Jiajing Chen, Minmin Yang, and Senem Velipasalar. Viewnet:

A novel projection-based backbone with view pooling for
few-shot point cloud classification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17652–17660, 2023. 1

[2] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog), 38(5):1–12, 2019. 1

Algorithm 1 QMix(x, y, λ, n way, k shot,m query) in
PyTorch style.

function QMix(x, y, lam, n way, k shot,m query,)
support = x[: n way × k shot] ▷ Get support

samples
query = x[n way × k shot :] ▷ Get qeury samples
query size = query.shape[0]
indices = randperm(query size)
mixed query = Mix X(query, query[indices], lam)

▷ Get mixed query samples
sppt y, qry y = y[: n way × k shot], y[n way ×

k shot :]
qry y a, qry y b = qry y, qry y[indices]
mixed x = concatenate(support,mixed query)
y a = concatenate(sppt y, qry y a)
y b = concatenate(sppt y, qry y b)
return mixed x, y a, y b, lam

end function



Algorithm 2 SQMix(x, y, λ, n way, k shot,m query) in PyTorch style.

function SQMix(x, y, lam, n way, k shot,m query)
cls indices = randperm(n way) ▷ Random permutation of classes
sppt x, query x = x[: n way × k shot], x[n way × k shot :]
sppt y, query y = y[: n way × k shot], y[n way × k shot :]
sppt x = sppt x.reshape(n way, k shot, ∗sppt x.shape[1 :])
query x = query x.reshape(n way,m query, ∗query x.shape[1 :])
sppt y = sppt y.reshape(n way, k shot)
query y = query y.reshape(n way,m query)
sppt x1, sppt x2 = sppt x, sppt x[cls indices]
query x1, query x2 = query x, query x[cls indices]
sppt x1 = sppt x1.reshape(n way × k shot, ∗sppt x1.shape[2 :])
sppt x2 = sppt x2.reshape(n way × k shot, ∗sppt x2.shape[2 :])
query x1 = query x1.reshape(n way ×m query, ∗query x1.shape[2 :])
query x2 = query x2.reshape(n way ×m query, ∗query x2.shape[2 :])
mixed sppt x = Mix X(sppt x1, sppt x2, lam)
mixed query x = Mix X(query x1, query x2, lam)
sppt y a, sppt y b = sppt y, sppt y[cls indices]
qry y a, qry y b = query y, query y[cls indices]
sppt y a, sppt y b = sppt y a.reshape(−1), sppt y b.reshape(−1)
qry y a, qry y b = qry y a.reshape(−1), qry y b.reshape(−1)
mixed x = concatenate(mixed sppt x,mixed query x) ▷ Concatenate mixed data
y a = concatenate(sppt y a, qry y a) ▷ Concatenate mixed labels
y b = concatenate(sppt y b, qry y b)
return mixed x, y a, y b, lam

end function


