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1. Notations and Preliminaries
We describe the necessary preliminaries and notation be-

low.

1.1. Notations

By default, we assume the notation ∥.∥ for 2-norm. ∥.∥F
is the Frobenious norm. ∥.∥2 is the usual euclidean norm.
λmax(A) is maximum eigenvalue of matrix A. ⊙ denotes
the element-wise product of two matrices or vectors. ⊗
denotes the Kronecker product of two matrices or vectors.
∇ba denotes the Jacobian of a w.r.t b. eig(A) denotes the
eigenvalues of matrix A. vec(A) denotes the vectorization

operation. If A ∈ Rn1×n2 , then vec(A) ∈ Rn1n2×1(n2

columns of A are stacked one after other). HW(L) is Hes-
sian of Loss L with respect to parameters W. λ(H) denotes
eigenvalue of H. O denotes the usual Big-O notation.

1.2. Preliminaries

If x ∈ Rd×1

eig(xx⊤) = ∥x∥22 (1)

(A ⊗ B)⊤ = A⊤ ⊗ B⊤ (2)

If A,B,C,D matrices of compatible dimensions then the
following holds

(A ⊗ B)(C ⊗ D) = AC ⊗ BD (3)

(A ⊗ B)C = AC ⊗ B (4)

eig(A ⊗ B) = eig(A)⊗ eig(B). (5)

For any symmetric matrices S1 and S2, the following
holds.

λmax(S1 + S2) ≤ λmax(S1) + λmax(S2) (6)

We now provide proof of the theorems in the next section.

2. Proof for the Theorems in the main paper
Theorem 1. If Hll ∈ Rdl denotes the layer l Hes-
sian and H ∈ Rd denotes the over all Hessian and∑L

l=1 dl = d, where L is the total number of lay-
ers. If the Hessian entries are bounded above we then
have the following result. λ(H) ∈ ∪L

l=1[λmin(Hll) −
O(max(dl, d− dl)), λmax(Hll) +O(max(dl, d− dl))]



Proof. Let x ∈ Rd×1 be the eigen vector of H be the
Hessian matrix and it is symmetric partitioned with Hij ∈
Rdi×dj . The block diagonal matrices are the ones with
i = j and there are L such matrices along the diago-
nal. We also assume that x is partitioned into L vectors
as x = [x1

⊺,x2
⊺, ...,xL

⊺]
⊺ where xj ∈ Rdj×1.

Since x is assumed to be the eigenvector and λ be asso-
ciated eigenvalue we have the following

λxl = Hllxl +

L∑
j=1,j ̸=l

Hljxj (7)

Here xl is chosen such that ∥xl∥ ≥ ∥xi∥ for all i.
Throughout the proof we mean ∥.∥ as 2-norm.

Taking the norm on Eq. 7 we get the following

(8)

∥(λI−Hll)xl∥ =

L∑
j=1,j ̸=l

∥Hljxj∥

≤
L∑

j=1,j ̸=l

∥Hlj∥∥xj∥

The first inequality is by triangle inequality and the sec-
ond is by the definition of norm ∥Ax∥ ≤ ∥A∥∥x∥.

Dividing the equation 8 by ∥xl∥ we get the following

(9)

∥(λI−Hll)xl∥
∥xl∥

≤
L∑

j=1,j ̸=l

∥Hlj∥
∥xj∥
∥xl∥

≤
L∑

j=1,j ̸=l

∥Hlj∥

The second inequality follows as ∥xj∥ ≤ ∥xl∥.
It is easy to see that

∥(λI−Hll)xl∥
∥xl∥

≥ min
i

|λ− λi(Hll)| (10)

as (λI − Hll) is a symmetric matrix. Here λ1(Hll) ≥
λ2(Hll)... ≥ λdl

(Hll) using Eq 9 and Eq 10 we get the
following.

min
i

|λ− λi(Hll)| ≤
L∑

j=1,j ̸=l

∥Hlj∥ (11)

This implies that any of the following is true
|λ− λ1(Hll)| ≤

∑L
j=1,j ̸=l ∥Hlj∥ or |λ− λ2(Hll)| ≤∑L

j=1,j ̸=l ∥Hlj∥ or the |λ− λdl
(Hll)| ≤

∑L
j=1,j ̸=l ∥Hlj∥.

Hence, we take the worst-case possibility that contains
all the regions i.e.,

λ ≤ λ1(Hll) +

L∑
j=1,j ̸=l

∥Hlj∥ (12)

λ ≥ λdl
(Hll)−

L∑
j=1,j ̸=l

∥Hlj∥ (13)

Note that λ1(Hll) ≜ λmax(Hll) and λdl
(Hll) ≜

λmin(Hll).
It remains to show that

∑L
j=1,j ̸=l ∥Hlj∥ ≤

O(max(dl, d− dl)).

∥Hlj∥2 ≤ ∥Hlj∥2F ≤ Bdldj (14)

where ∥Hlj∥F is the Frobenious norm of the matrix. The
first inequality in Eq. 14 is because the 2-norm is, at most,
the Frobenious norm, and the second inequality is from the
assumption of the theorem that each entry is bounded above
by B.

(15)

L∑
j =1,j ̸=l

∥Hlj∥ ≤

√√√√(L− 1)

L∑
j=1,j ̸=l

∥Hlj∥2

≤
√

B(L− 1)dl(d− dl)

≤ O(max(dl, d− dl)).

The first inequality uses Cauchy Schwartz inequal-
ity, and the second inequality uses Eq. 14 and also the
fact that

∑i=1
i=1 di = d and the third inequality fol-

lows by definition of O. From Eq. 12, Eq. 13 and
Eq. 15 we have shown that λ(H) ∈ [λmin(Hll) −
O(max(dl, d− dl)), λmax(Hll) + O(max(dl, d− dl))].
But the l can be anywhere from l = 1 to l = L hence
we take the union of all the possible regions and hence
we get the desired result λ(H) ∈ ∪L

l=1[λmin(Hll) −
O(max(dl, d− dl)), λmax(Hll) +O(max(dl, d− dl))]

The general versions of the Gershgorin theorem to block
matrices and is studied in [2, 6, 8]. We presented the proof
for the Hessian matrices, which are symmetric, by simply
extending the usual Gershgorin circle theorem to block ma-
trices. We bound the eigenvalues of the Hessian in terms of
the min and max eigenvalues of the layerwise Hessian.

We consider the C class classification problem. The
training set S = {(xi,yi)}Ni=1 is considered, where each
xi ∈ RD or xi ∈ RC×H×W and yi ∈ {0, 1}C is drawn iid
from the distribution D. We then consider an L-layer neural
network with ReLU non-linearity, where the network out-
puts the logits zi. The logits are obtained by a series of fully
connected (FC)/convolutional (CONV) layers, followed by
a non-linearity, represented concisely by Eq. 16 for an FC
layer with parameters ({Wl,bl}) and Eq. 17 for a CONV
layer with parameters ({Wl,bl}). We denote the collection
of all the model parameters as θ := {W1,b1...WL,bL}
and θ ∈ Rd where all the model parameters rolled into a



single vector of dimension d. Let fθ(xi) denote the final
layer output of the model

zil = FC(ail−1; {Wl,bl}) (16)

zil = CONV(ail−1; {Wl,bl}) (17)

ail = σ(zil) (18)

where σ(.) denotes non-linearity a0 = xi, zi = aiL =
fθ(x

i). Finally, we use the cross-entropy loss

L(yi, zi) =

C∑
c=1

−yi[c]log(ŷi[c]). (19)

where ŷ is the softmax on logits zi as

ŷ = exp(zi)/

C∑
m=1

exp(zi[m])) (20)

where xi,yi denotes the ith input sample and label respec-
tively. We use the notation Li for L(yi, zi). The overall
Loss computed on Batch size of B is denoted by

L =
1

B

B∑
i=1

Li (21)

We have the following Lemma due to [9]. We denote
θ ∈ Rd as the collection of all the parameters, where d
denotes the total number of parameters.

Lemma 1. For the Network described in Eq. 16 to Eq. 21.
The Hessian of loss Li with respect to weights of FC
layer Wl denoted by HWl

(Li) is given by HWl
(Li) =

Ml(x
i, θ) ⊗ ail−1a

i⊤
l−1, where Ml(x

i) is a symmetric ma-
trix.

Proof. For the detailed derivation, please refer to Appendix
A1 of [9]. We present the proof for the sake of complete-
ness. We fix a layer l for which we want to compute the
Hessian, the inputs to layer l is given by ail−1. The layer l
is parameterized by Wl and bl.

zil = Wla
i
l−1 + bl (22)

By using the chain rule for Hessian as [7, 9] we get the
following.

Hwl
(Li) =

∂zil
∂wl

⊤

Hzi(Li)
∂zil
∂wl

+

dl∑
n=1

∂l(zi,yi)

∂zi[n]
∇2

wl
zi[n]

(23)
Here wl := vec(Wl), zi[n] is the nth element of the

vector zi. ∇2
wl
zi[n] is Hessian of zi[n] w.r.t wl. Also note

that by convention Hwl
(Li) := HWl

(Li) as we are only
concerned with the Hessian of the loss w.r.t to the parame-
ters of the layer l not the structure in which these parameters
are present.

From 22 we get the following

∂zil
∂wl

= Idl
⊗ ail−1

⊤
(24)

It is easy to see that ∇2
wl
zi[n] = 0 and from 24 we have

the following

Hwl
(Li) = (Idl

⊗ ail−1)Hzi(Li)(Idl
⊗ ail−1

⊤
) (25)

The above equation can be simplified as

Hwl
(Li) = Ml(x

i, θ)⊗ ail−1a
i
l−1

⊤
(26)

where Ml(x
i, θ) := Hzi(Li). It can be seen that Ml(x

i, θ)
is a symmetric matrix by definition. This concludes the
proof

Consider the CONV layer with input feature map of
dimension ail−1 ∈ RCl−1×Hl−1×Wl−1 , the output feature
map zil ∈ Rm×Hl×Wl and convolutional kernel Wl ∈
Rm×Cl−1×K1×K2 , we then have the following Lemma due
to [9].

We now state the two of our results that relate the layer-
wise top eigenvalues to the activation norm of each layer.
Consider a FC layer as in Eq. 16 with ail−1 ∈ Rdl−1 and
weights Wl ∈ Rdl×dl−1 . We then have the following result.

Theorem 2. If ∥θ∥2 ≤ B̃ then the top eigenvalue
of layer-wise Hessian for the loss L w.r.t to Wl de-
noted by λmax(HWl

(L)) for l = 2 to L, computed over
the batch of samples for a L layered fully connected
neural network for multi-class classification is given by
λmax(HWl

(L)) ≤ αl

∑
i∈B ∥ail−1∥

2

2
where αl > 0.

Proof. We use the results from the previous Lemma’s and
the fact that Hessian for the batch is the average of Hessian
of all the individual samples.

L =
1

B

∑
i∈B

Li (27)

HWl
(L) = 1

B

∑
i∈B

HWl
(Li) (28)

By repeated application of Eq. 6 to Eq. 28, we have the
following.

λmax(HWl
(L)) ≤ 1

B

∑
i∈B

λmax(HWl
(Li)) (29)



From the Lemma 1 we have the following

HWl
(Li) = Ml(x

i, θ)⊗ ail−1a
i⊤
l−1 (30)

By using Eq. 5 in the above Eq. 30 we get the following.

λmax(HWl
(Li)) = λmax(Ml(x

i, θ))λmax(a
i
l−1a

i⊤
l−1)

(31)
We now show that the λmax(Ml(x

i, θ)) exists and its
finite in the following arguments.

From [4], we know that the eigenvalues are the continu-
ous functions of the coefficients of characteristic polynomi-
als, and so is the top eigenvalue.

Since every entry in the matrix Ml(x
i, θ) is a contin-

uous function of θ. The coefficients of the characteristic
polynomials are also continuous functions of θ. Since the
continuity is preserved under the composition of continuous
functions, i.e., if f is continuous and g is continuous, then
the composition fog is continuous.

If top eigenvalue λmax is a continuous function of the
coefficients of characteristic polynomial and the coefficients
are again a continuous function of the variable θ. We con-
clude that λmax is a continuous function θ.
The set {θ: ∥θ∥2 ≤ B̃} where θ ∈ Rd is compact. Contin-
uous function map compact sets to compact sets. Thus the
function λmax attains its supremum and its finite.

λmax(Ml(x
i, θ)) ≤ sup

θ
(λmax(Ml(x

i, θ))) = αi
l (32)

We note that αi
l > 0, suppose if its negative, by 31 we

see that top eigenvalue of layerwise Hessian is negative; this
implies the loss function is concave, which contradicts the
fact that neural-networks are non-convex and non-concave
functions.

By using the bound in Eq. 32 in Eq. 31, we can bound
the Eq. 29 as below.

λmax(HWl
(L)) ≤ 1

B

∑
i∈B

αi
l∥ail−1∥

2

F
(33)

we have the following, where αl is the maximum over all
the training samples αi

l .

αi
l ≤ max

i
(αi

l) = αl (34)

Using Eq. 34 in the Eq. 33 we get the following

λmax(HWl
(L)) ≤ 1

B
αl

∑
i∈B

∥ail−1∥
2

2
(35)

This completes the proof.

Lemma 2. For the Network described in Eq. 16 to
Eq. 21. The Hessian of loss Li with respect to weights of
CONV layer Wl denoted by HWl

(Li) is approximated by
HWl

(Li) ≈ M̃l(x
i)⊗ ail−1a

i⊤
l−1.

Proof. For a detailed discussion, please refer to Appendix
A.2 of [9].

Theorem 3. If ∥θ∥2 ≤ B̃, the top eigenvalue of layer-
wise Hessians for the loss (w.r.t to Wl for l = 2 to L )
computed over the Batch of samples for a L layered con-
volutional neural network for multi-class classification is
given by λmax(HWl

(L)) ≤ αl

∑
i∈B ∥ail−1∥

2

F
where where

αl > 0.

Proof. In the proof technique, we follow the exact similar
steps as the above theorem with some minor changes. The
major change here is we now use the convolutional layers.

L =
1

B

∑
i∈B

Li (36)

HWl
(L) = 1

B

∑
i∈B

HWl
(Li) (37)

By repeated application of Eq. 6 to the Eq. 37 we have
the following.

λmax(HWl
(L)) ≤ 1

B

∑
i∈B

λmax(HWl
(Li)) (38)

From the Lemma 2 we have the following

HWl
(Li) = M̃l(x

i)⊗ ail−1a
i⊤
l−1 (39)

By using Eq. 5 in the above Eq. 39 we get the following.

λmax(HWl
(Li)) = λmax(M̃l(x

i))λmax(a
i
l−1a

i⊤
l−1)

(40)
We cannot use Eq. 1 directly to find the eigenvalue of

ail−1a
i⊤
l−1 as ail−1 is matrix not a vector, because we are

dealing with convolutional layers. Since ail−1a
i⊤
l−1 is a pos-

itive semi-deifinite matrix we have the following inequality

λmax(a
i
l−1a

i⊤
l−1) ≤ Trace(ail−1a

i⊤
l−1) (41)

By using the identity Trace(ail−1a
i⊤
l−1) = ∥ail−1∥

2

F
in

the Eq. 40 we get the following

λmax(HWl
(Li)) ≤ λmax(M̃l(x

i))∥ail−1∥
2

F
(42)

We can use similar reasoning as in Theorem 2 to bound
the value of the λmax(M̃l(x

i)).
By substituting the above inequality 42 in 38 we get the

following.

λmax(HWl
(L)) ≤ 1

B

∑
i∈B

αi
l∥ail−1∥

2

F
(43)



where we have used the fact λmax(M̃l(x
i)) ≤ αi

l .
If we denote αl as the maximum overall αi

l over the
batch. We then get the following

λmax(HWl
(L)) ≤ 1

B
αl

∑
i∈B

∥ail−1∥
2

F
(44)

This completes the proof.

3. Model Architectures

In Table 1, the model architecture is shown. We use
PyTorch style representation. For example convolutional
(CONV) layer(3,64,5) means 3 input channels, 64 output
channels and the kernel size is 5. Maxpool(2,2) represents
the kernel size of 2 and a stride of 2. Fully Connected
(FC)(384,200) represents an input dimension of 384 and an
output dimension of 200. The architecture for CIFAR-100
is exactly the same as used in [1].

Table 1. Models used for Tiny-ImageNet and CIFAR-100 datasets.

CIFAR-100 Model

Tiny-ImageNet Model
ConvLayer(3,64,3)
GroupNorm(4,64)

Relu
MaxPool(2,2)

ConvLayer(64,64,3)
GroupNorm(4,64)

ConvLayer(3,64,5) Relu
Relu MaxPool(2,2)

MaxPool(2,2) ConvLayer(64,64,3)
ConvLayer(64,64,5) GroupNorm(4,64)

Relu Relu
MaxPool(2,2) MaxPool(2,2)

Flatten Flatten
FullyConnected(1600,384) FullyConnected(4096,512)

Relu Relu
FullyConnected(384,192) FullyConnected(512,384)

Relu Relu
FullyConnected(192,100) FullyConnected(384,200)

4. Sensitivity to hyper-parameter ζ

In figure 1, we perform sensitivity analysis on the hyper-
parameter ζ i.e. how model accuracy varies over different
values of ζ. We consider the algorithm FedAvg+ MAN on
CIFAR-100 dataset with Dirichlet-based non-iid data par-
tition (δ = 0.3). We observe that accuracy is stable over
ζ ∈ {0.1, 1.5}.
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Figure 1. Sensitivity of Accuracy to the hyper-parameter ζ. It can
be seen that accuracy is stable over ζ ∈ {0.1, 3.0}

5. Additional Results
5.1. Results for FedSAM/ASAM and FedSpeed with

and without MAN

We have developed all our experiments based on the
open source code provided by [1]. In the figure 2, we pro-
vide the plots for communication rounds vs Accuracy on
CIFAR-100 dataset for FedSAM, FedASAM and FedSpeed
with and without using our MAN regularizer. It can be
seen that MAN regularizer consistently improves the per-
formance of all the algorithms. Similar results for Tiny-
ImageNet are provided in the figure 3. We can observe con-
sistent improvement in the performance of the algorithms
when MAN regularizer is added.

5.2. CIFAR-10 Results

In this section we provide the results for CIFAR-10
dataset. In the table 2 we report the performance of all the
algorithms (FedAvg,FedDyn,FedDC, FedSAM,FedASAM
and FedSpeed) with and without using the MAN. It can be
clearly seen that the performance of all the algorithms can
be improved when our MAN regularizer is used with the
algorithms.

5.3. Empirical Hessian Analysis

In Table 3 we present the top eigenvalue and the trace
of the Hessian of the loss of global model for FedASAM,
FedSpeed and their improved versions using MAN i.e,
FedASAM+MAN and FedSpeed+MAN.

6. Non-iid Data generation
We now briefly describe how the data is generated using

the Dirichlet distribution. This distribution is parameterized
by parameter δ. For every client, we sample a vector for the
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Figure 2. Convergence Comparison for CIFAR-100: We compare performance of the algorithms FedAvg, FedDyn, FedDC and the
proposed FedAvg+MAN, FedDyn+MAN and FedDC+MAN for 500 communication rounds. It can be clearly seen that proposed approach
significantly improves the existing algorithms across the communication rounds.
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Figure 3. Convergence Comparison for Tiny-ImageNet: We compare the performance of the algorithms FedAvg, FedDyn, FedDC and
the proposed FedAvg+MAN, FedDyn+MAN, and FedDC+MAN for 500 communication rounds. It can be clearly seen that the proposed
approach significantly improves the existing algorithms.

Table 2. Comparison of various methods with and without MAN
regularizer with different degrees of heterogeneity on CIFAR-
10 dataset. MAN clearly improves the performance consistently
across all the methods. All the experiments are repeated for three
different initializations and their mean and standard deviations are
reported.

Method CIFAR10
δ = 0.6 δ = 0.3 iid

FedAvg 79.34±0.19 80.19 ±0.46 81.44±0.43

FedAvg+MAN 82.53±0.25 83.35±0.09 84.18 ±0.15

FedSAM 80.42 ±0.47 81.40 ±0.17 82.54 ±0.14

FedSAM+MAN 81.56 ±0.1 82.54 ±0.16 84.19 ±0.26

FedASAM 79.90 ±0.43 80.83 ±0.08 82.27 ±0.45

FedASAM+MAN 80.81 ±0.06 81.85 ±0.08 84.22 ±0.1

FedDyn 82.00 ±0.22 82.53 ±0.06 84.16 ±0.41

FedDyn+MAN 83.84±0.38 84.63±0.17 84.80±0.25

FedDC 83.10 ±0.37 83.64 ±0.13 84.8 ±0.21

FedDC+MAN 83.27±0.18 83.59 ±0.15 85.08 ±0.1

FedSpeed 84.06 ±0.11 84.24 ±0.14 85.14 ±0.3

FedSpeed+MAN 84.37 ±0.25 84.82 ±0.16 85.95 ±0.24

Dirichlet distribution. This vector is of the length of a to-

Table 3. Comparison of top eigenvalues and trace of the algo-
rithms with and without MAN regularizer, lower values are bet-
ter. We can observe that by augmenting MAN regularization, i.e.,
FedASAM+MAN, FedSpeed+MAN, we obtain lower trace and
lower top eigenvalues, which is indicative of flat minimum, and
hence, it attains better accuracy.

CIFAR-100
δ = 0.3 δ = 0.6

Method Top
eigenvalue Trace

Top
eigenvalue Trace

FedASAM 51.49 8744 53.39 9056
FedASAM+MAN 43.80 4397 42.00 4747
FedSpeed 47.31 6463 49.75 6519
FedSpeed+MAN 40.41 3806 37.64 3674

tal number of classes and represents the label distribution of
the clients. The lower value of δ implies high heterogene-
ity, i.e.; label distribution is non-uniform; only a few labels
dominate the samples on the client’s data. We demonstrate
this behavior in Figure 4, where the label distribution of 5
clients is drawn from the Dirichlet distribution by varying



(a) δ = 1.0 (b) δ = 0.6 (c) δ = 0.3

Figure 4. Label distribution of 5 clients based on Dirichlet distribution for CIFAR-100 dataset is shown for δ = 1.0, δ = 0.6 and δ = 0.3.
The degree of heterogeneity increases as the value of δ decreases. Each client gets 500 samples, and for δ = 1.0 the client receives all the
labels more uniformly compared to the case of δ = 0.3 where only a few labels are dominant.

the parameter δ. We can observe as the value of δ decreases,
the label distribution across the clients become more non-
uniform. The dataset we have used is CIFAR-100, so the
label distribution has support over 100 classes.

7. Hyper-parameter settings

All the algorithms use a learning rate of 0.1, batch size
of 50, client participation of 10%, and a gradient clipping
threshold of 10. We use 5 local epochs for client training
learning rate decay of 0.998 for every round was used.

For FedAvg+MAN, we use ζ = 0.6 by default. For Fed-
Dyn, we use α = 0.01. For FedDC also uses α = 0.01. For
FedSpeed, we use ρ = 0.1 for non-iid settings and ρ = 0.01
for iid setting, β = 1.0 ,γ = 1.0 and no gradient cutoff
threshold to 0.05. For FedSAM we use ρ = 0.05. Only for
Tiny-ImageNet with iid partition, we set ρ = 0.03. When
we use MAN, i.e, FedSAM+MAN, we set ρ = 0.01 for
Tiny-ImageNet with iid partition, and weight decay of 1e−3
is used. For FedASAM we use ρ = 0.5 and η = 0.2. Only
for iid partition we set the values to ρ = 0.1 and η = 0.2.

8. Algorithm details of FedAvg+MAN, Fed-
Dyn+MAN and FedDC+MAN

We present the algorithm details for implementing Fe-
dAvg+MAN, FedDyn+MAN, and FedDC+MAN in the Al-
gorithms 1, 2 and 3 respectively. Each client minimizes the
activation norm as a regularizer in the algorithm and the
cross-entropy loss, as shown in the below Eq. 45.

fk(w) ≜ Lk(w) + ζLact
k (w) (45)

Lk(w) denotes the task-specific loss in our case, it is (cross-
entropy loss) and Lact

k (w) is the activation norm loss that
is used to attain flatness and is described in detail in the
Sec.3.2.3 of the main paper. The hyper-parameter ζ trades
off between the flatness and the cross-entropy loss. In this

Algorithm 1 FedAvg+MAN

1: Server Executes
2: Initialize wt

3: for every communication round t in T do
4: sample random subset S of clients, S ⊂ [m]
5: for every client k in S in parallel do
6: wt

k = ClientUpdate(k,wt−1)
7: end for
8: wt = ServerAggregation(wt

k)
9: end for

10: procedure CLIENTUPDATE(k,wt−1)
11: set wt

k = wt−1

12: for every epoch e in E do
13: for every batch b in B do
14: Compute fk(w)
15: wt

k = wt
k −∇fk(w

t
k)

16: end for
17: end for
18: return wt

k

19: end procedure
20: procedure SERVERAGGREGATION(wt

k)
21: wt =

∑
k

nk

n wt
k

22: end procedure

way, it is straightforward to integrate the proposed regular-
izer ’MAN’ into the existing FL algorithms. The complete
details of individual algorithms can be found in FedAvg [5],
FedDyn [1] and FedDC [3]. We can similarly extend the
MAN to FedSAM/ASAM and FedSpeed as well. We sim-
ply add activation norms to the client loss function as in
Eq. 45.
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