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The supplementary material is organized as follows:
Section A explains the discussion and limitation about the
proposed method; Section B provides additional qualitative
visualization of the source separation; Section C contains
extra details of the proposed network architectures; Section
D explains the training and evaluation configurations of ex-
periments, and Section E adds extra experiments.

A. Discussions
This section explains the discussions about our motiva-

tion, limitation, and future direction.
Our proposed architecture is designed for the separa-

tion of binaural channels, which produces predicted masks
for both channels. As illustrated in Fig. 1, both the time-
discrete signals and spectrograms are obviously different
between the left and right channel. Furthermore, we intro-
duce the IPD feature between two channels, which lever-
ages the phase information of input channels and benefits
network learning. Consequently, we utilize two channels
as input and produce two masks for each channel. Finally,
we obtain the separated audios of sounding objects for each
channel.

Figure 1. One visualization example of the left and right channel.

In real world videos, there could include scenario noise

and background sounds, which are not able to be localized
in one certain direction. Our approach is limited to the sce-
nario composed of visible sounding objects and background
noises. In addition, all videos we used were recorded in a
music room with a 3Dio binaural microphone and a Go-
Pro camera. The position of the performer hardly changes
throughout the video. This constraint limits the application
for actively moving sound scenarios.

One promising future research direction is to extend our
framework to learn audio-visual spatial audio separation in
general videos, in which multiple visual objects could co-
exist and not all of them make sound. Moreover, we prepare
to generalize our approach to active sound separation. For
another aspect, we will make effort to address comprehen-
sive scenarios containing more than two objects by encod-
ing individual visual and positional features and exploring
more effective ways of utilizing the spatial information.

B. Additional Qualitative Results
This section provides the external qualitative results and

videos of our proposed separation method. The settings of
the experiments are revealed in the main paper.

Fig. 3 presents additional visualization results of sepa-
rating binaural mixtures using LAVSS from the solo Fair-
Play datasets. Quantitative experiments in duet videos are
not available since the ground truth is unknown. However,
we show qualitative video results of our LAVSS method
compared to the baselines in the supplementary video. Our
source code and pre-trained models will be released.

C. Network Architectures
This section provides additional details of the network

structures and implementation.

C.1. Vision-Position Embedding Framework

Video processing and vision network For object de-
tection, we screen out one object with the highest confi-
dence score among all detected ones as the audible ob-



ject. We have verified that the accuracy of selecting the
audible objects is up to 90%. For an RGB image of size
3×Hb ×Wb, we perform frame augmentation to resize the
image of 3× 224× 224. Then we utilize the image encoder
of ResNet-18 (stride = 32) [2] to extract the visual feature
Fv of size Cv ×H ×W , where H = W = 7, Cv = 512.

Figure 2. The encoding range of x and y coordinates for objects.

Position network For the detected coordination area of
size Hb×Wb, we conduct positional encoding through each
pixel of the area and obtain Ce×Hb×Wb, where Ce equals
64. It is first passed to the adaptive max pooling to reduce
the last two dimension size of H×W . Then the multi-layer
perception (MLP) is used to extract the positional feature Fp

of size Cp ×H ×W . The MLP includes two hidden layers
of 256 and 512 channels followed by a ReLU activation.
Note that Cp is equal to the vision feature vector dimension
Cv in the previous section.

The positional embedding of the cropped object region
is exactly computed on the entire image scene, which il-
lustrates the relative position between the object and video
frame of size 1280 × 720. As depicted in Fig. 2, we
encode the position of piano to range x ∈ [5, 329] and
y ∈ [294, 637] (not from 0 for every cropped object). Thus,
the network takes the discriminative position as input.

VP cross attention module We flatten over the last two
axes of Fv and Fp and infuse them with a cross-modal atten-
tion module. The output vector F ′

v and F ′
p are concatenated

and passed to a 2D convolutional layer to halve the channel
dimension. Finally, the visual-positional feature vector Fvp

is generated of size Cvp ×H ×W , where Cvp equals 512.

C.2. Multi-modal Sound Source Separation

Audio embedding network The audio waveform for
both channels is firstly converted to spectrogram represen-
tation XL

m, XR
m of size 1×Hs×Ws using STFT transform,

where Hs = Ws = 256. In addition, the IPD feature is
of the same dimension and concatenated with left and right
spectrograms, respectively. Then the audio feature of size
2×Hs×Ws is passed to the U-Net encoder, which is com-
posed of 7 down-convolutional layers.

Multi-scale audio fusion network At the bottleneck, the
audio feature is of size 512 × 2 × 2. For multi-modal fea-
ture fusion, we do not purely utilize the feature extracted

after the last down-convolution, since the feature size is too
small. Consequently, we perform multi-scale feature fusion
for the last three layers by concatenation after flattening the
last two dimensions. The multi-scale audio feature Fa is of
size Ca ×Qa, where Ca = 512, Qa = 84. The AVP cross-
attention module infuses Fa and Fvp followed by a concate-
nation operation and 1 × 1 convolutional layer. The cross-
modal feature Favp is of size 1024× 2× 2 and fed into the
up-convolutional layers. With the thresholding(th = 0.5)
operations, the audio features are converted to binary masks
ML

n ,MR
n , which are then formulated by element-wise mul-

tiplication with the original mixture spectrograms XL
m, XR

m.
The estimation of separated audio waveforms x̃L

n(t), x̃
R
n (t)

are obtained after ISTFT.

Signal reconstruction In LAVSS, we leverage the phase
of the mixed signal for reconstruction. There are two rea-
sons: 1) We follow the same reconstruction method in 2.5D
[1] for binaural audios separation (kindly see 2.5D Supp.C).
Prior works on multi-microphone enhancement also multi-
ply T-F masks by the mixed signal to reconstruct micro-
phone arrays at different positions [3]. 2) It is difficult to
directly estimate the phase since the variability of slight de-
viations. Thus, we measure the loss between masks and
add time domain loss to alleviate this issue. Complex spec-
tra could be used as an implicit spatial feature to replace the
explicit IPD feature. This would be an interesting idea to
address the issue in the future.

C.3. Transfer learning by monaural dataset

Details of pre-training During pre-training on the
monaural MUSIC dataset, the sound separation network
takes a single channel spectrogram input of size 1×T ×F .
Then the U-Net weights are re-trained by taking input of
size 2×T ×F after adding the IPD information. In order to
handle the mismatch of loading the pre-trained weights, we
purely drop the weights of the first up-convolutional layer
and keep the remaining network weights of the sound sepa-
ration and visual network. The experiment results confirms
that it has slight impact on the whole training process.

D. Implementation Details
Training optimization We train our LAVSS framework
with the implementation of PyTorch and apply Adam opti-
mizer with momentum 0.9, weight decay 1e-4, and batch
size 32 for training on 4 NVIDIA 1080 Ti GPUs. For
monaural pre-training, we train the vision and sound sep-
aration network on MUSIC dataset by using learning rates
of 1e-4 and 1e-3. During spatial audio training, we load the
pre-trained weights for end-to-end re-training. The learning
rate of the vision, position, and sound separation network
on the Fair-Play dataset is set to 1e-4, 1e-4, and 5e-4, re-
spectively.



Evaluation The separation performance is only mea-
sured by SIR and SDR. The SAR is not informative since
it captures only the absence of artifacts. Hence it can be
high when the separation result is poor. We evaluate both
solo and duet videos. For solo videos, we conduct a ”mix-
and-separate” strategy (the same as the training process)
and evaluate the separation results with the ground truth for
both quantitative and qualitative results. For duet videos,
we compare the qualitative evaluation of different methods
with our LAVSS and inference from the separated sound.

E. Supplementary Experiment Results
Overlap and generalization Due to the overlap of
instruments between the MIT MUSIC and FAIR-play
datasets, we evaluate the performance of the model for
overlapping and distinct instruments with or without pre-
training, respectively. The results are shown in Tab. 1.
There are only three overlapping instruments between the
two datasets: guitar, cello, and trumpet. We compare the
model’s performance between overlapping instruments and
distinct ones in the FAIR-Play dataset. The following re-
sults reveal a small difference between the two types. Rich
training samples alleviate the difficulty of the separation
network, revealing good generalization on distinct instru-
ments.

Configuration Type Left Channel Right Channel Average
SDR↑ SIR↑ SDR↑ SIR↑ SDR↑ SIR↑

Only pre-train Overlap 5.13 8.63 5.19 8.66 5.16 8.65
Distinct 4.99 8.54 5.02 8.58 5.01 8.56

Final model Overlap 5.94 11.79 6.17 11.76 6.06 11.78
Distinct 5.79 10.06 5.84 10.14 5.82 10.10

Table 1. Comparisons of separation results for overlap and distinct
instruments with or without pre-training.
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Figure 3. Examples visualization of the sound source separation performances for left and right channel using LAVSS with mixtures of
two different sources from Fair-Play dataset.


