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1. More Detailed Results

1.1. Full Sequence Image-to-Image Translation and
Multi-modal Image Registration Results

In Fig. 1, we show the image-to-image translation (I2I)
and multi-modal image registration results on a full tagged
MR (tMR) and untagged cine MR (cMR) image sequence
pair. There are 24 frames in each sequence. As we dis-
cussed in the introduction section in the main text, in the
early time frames of a tMR sequence, e.g., FO and F1, the
tagged blood obscures the boundary between myocardium
wall and the blood pool, posing challenges on image regis-
tration and 12I. We thus trained a registration network, i.e.,
VoxelMorph, to warp the third frame in each tMR sequence
to replace the first and second frames. Note that in all of our
experiments, we did this pre-processing step on the tMR se-
quences for fair comparisons.

In Fig. 1, we use the checkerboard for the image align-
ment inspection. As indicated by the red arrows in column
(g), before registration, cMR images are unaligned with
tMR images. Our style reference-augmented I12I module
can translate the tMR images into fake cMR images with-
out any content distortion, as demonstrated in column (e),
the good alignment between the fake cMR and correspond-
ing tMR images. Our unsupervised cross-domain corre-
spondence learning module can align features of each cMR
image to be registered with those of the input tMR image
and enforce sample-specific style consistency between the
translated fake cMR image and the corresponding real cMR
image. For example, the real cMR image style of frames
F2, F3, F4 gradually changes from bright to dark, and our
fake cMR images can successfully generate coherent image
styles with their corresponding cMR style references. Simi-
lar examples could be found in frames F16, F17, F18, where
both the real and fake cMR image style gradually changes
from dark to bright. We qualitatively scrutinized all of our
test dataset and found that all the fake cMR images pos-
sessed consistent image styles with their corresponding real
cMR images to be registered. Note that, currently the tem-
poral coherence in an image sequence is not exploited for a
better 121 performance but we can achieve sample-specific

style consistency for the fake images with our unsupervised
cross-domain correspondence learning module. Since our
121 module can generate both content-preserving and style-
coherent fake cMR images, the downstream image registra-
tion task can be greatly benefited, as demonstrated by the
good alignment between the registered cMR and tMR im-
ages shown in column (f).

1.2. Learned Cross-domain Correspondences

In Fig. 2, we show more detailed comparison of learned
cross-domain correspondences between our model and A3.

(1) The query points in patch 1 of tMR are inside the
cardiac wall, but A3 predicts correspondences outside the
wall in the style reference (SR), i.e., cMR.

(2) The query points in patch 2 and 4 of tMR are on the
boundary of the cardiac wall, but A3 predicts correspon-
dences outside and far away from the wall in the SR.

(3) The query points in patch 3 of tMR are slightly out-
side the cardiac wall, but A3 predicts correspondences in-
side the wall in the SR.

Our model, however, can learn plausible cross-domain
correspondences without supervision for all kinds of query
points. Our I2I module thus generates the sample-specific
style consistent fake image with the style reference image.

1.3. Visualization of Deformation Field

In Fig. 3, we visualize the predicted deformation fields
by different methods. As we discussed in the introduction
section in the main text, large deformation between modali-
ties is one of the challenges for multi-modal medical image
registration. We decompose large deformation between the
tMR and cMR image pair as global affine and local non-
rigid deformation components. By the design of a shared
TransUnet for efficient feature embedding, our registration
network can predict both affine and non-rigid deformations
simultaneously. As shown in Fig. 3 (b), our predicted de-
formation fields are the composition results of affine and
non-rigid deformation components. In this way, while the
affine component first deforms the moving image coarsely
to eliminate possible linear and large spatial deformation,
the non-rigid component then deforms the coarsely aligned



moving image in a finer scale to further eliminate non-linear
and small misalignment beyond the coverage of the affine
component. Our method generates smooth, invertible defor-
mation fields while capturing large deformations between
different modality images. Multi-resolution deformation
decomposition is another efficient way for the estimation of
large deformations, as used in the MIND baseline method
(with a 3-level image pyramid). However, by comparing
Fig. 3 (b) and (c), we note that, without the estimation
of possible affine deformation component, multi-resolution
method is less efficient than our method and struggles to es-
timate large deformations, as shown in the 3 chamber and 4
chamber views in Fig. 3.

We note that, accurate and efficient joint estimation of
global affine and local non-rigid deformations is non-trivial.
While there exist methods of using a shrinking network for
affine deformation estimation and a shrinking-expanding
network for non-rigid deformation estimation, few work
tries to share the parameters for the two networks. In [1], an
encoder-decoder based U-Net is employed to estimate affine
and non-rigid deformations. More specifically, the encoder
together with fully connected layers output the affine de-
formation parameters and the decoder outputs non-rigid de-
formation parameters. Then the two kinds of deformations
are composed as the hybrid deformation to warp the mov-
ing image towards the fixed image. In this way, the two
kinds of deformations share the encoder of the U-Net. Note
that, unlike cascaded methods which warp the moving im-
age multiple times, this method only warp the moving im-
age once with the estimated hybrid deformation field, which
is efficient but brings limitations. Firstly, it brings instabil-
ity for network training because the encoder is susceptible
to predict large affine deformations. While this limitation
could be mitigated by initializing the network training with
only the non-rigid deformation prediction, the method is
designed to predict misalignment between binary segmen-
tation masks. However, the registration between images
needs to optimize the network under the gray-scale inten-
sity space which is more complex than the binary space.
Thus, this method cannot generalize well from registering
binary masks to gray-scale images. We re-implemented this
method and trained S1 and S2 with the same generator as
our model which was trained in the first stage. From the
results in Table 1, without cascading the deformations, both
S1 (based on U-Net) and S2 (based on TransUnet) are infe-
rior to our method. We see the method in [1] fails to accu-
rately estimate the affine deformations between gray-scale
images.

We further note that, to our best knowledge, no previ-
ous work uses a shrinking-expanding network for affine de-
formation estimation and we are the first to use a shared
shrinking-expanding subnetwork for the two stages of de-
formation estimation. Our method not only reduces net-

Dice (%) T

Model | Cascading Shared Parts Embedding Layer ATine Non-rigid Composed

SI[I] Encoder CNN 65.64+15.9 | 75.7+£133 | 75.8+13.2
S2 Encoder ViT 66.84+16.1 | 76.1+£13.0 | 76.2+13.2
Ours v Encoder+Decoder ViT 69.64+145 | 754+135 | 77.4+11.9

Table 1. Comparison of joint affine and non-rigid deformation
estimation performance between [ 1] and ours.

work parameters greatly but also enables joint estimation
of the two kinds of deformation components compactly.
While the parameter reduction can avoid overfitting, joint
estimation of affine and non-rigid deformations results in
a global optimum of the final composed deformation field.
Our method thus outperforms all the baseline multi-modal
medical image registration methods by a significant margin.

Lastly, we clarify why the network parameters of our
model are less than those of C2 in Table 5 in the main text.
We use a 5-level TransUnet for both models as the shared
feature embedding subnetwork for the two stages of defor-
mation estimation. The feature embedding dimensions in
each level of the encoder are 2, 16, 32, 32, 32, while in each
level of the decoder are 32, 32, 32,32, 16. For C2, the in-
put feature embedding for the affine deformation estimation
head comes from the last layer of the encoder, which has a
dimension of 32; for our model, it comes from the last layer
of the decoder, which has a dimension of 16. The larger
input feature embedding dimension for C2 requires more
fully connected neurons in the affine deformation estima-
tion head, thus resulting in slightly larger network parame-
ter size.
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Figure 1. Image-to-image translation and multi-modal image registration results shown on a full tMR and cMR image sequence pair (best
viewed zoomed in). (a) tMR; (b) fake cMR; (c) registered cMR; (d) cMR; (e) checkerboard of (a) and (b); (f) checkerboard of (a) and (c);
(g) checkerboard of (a) and (d). ‘F’ means ‘frame’. Red arrows highlight unaligned areas between tMR and cMR.




(b) A3’s correspondences (c) Our correspondences

Figure 2. Learned cross-domain correspondences (color-coded) between a tMR and cMR (the style reference) image pair by different
121 models. The cMR image is unaligned with the tMR image. For the query points in tMR (a), our model (c) can predict plausible
cross-domain correspondences in the style reference cMR in an unsupervised fashion. Due to the lack of effective supervision and without
a content-preserving loss, A3 (b) cannot learn reasonable cross-domain correspondences. First row shows tMR image and query points
(left); style reference cMR image and learned correspondences by A3 (middle); style reference cMR image and learned correspondences
by our model (right). Second row shows zoomed in patches. Red contour shows the ground truth myocardium wall on tMR. Note the
many-to-one mapping (8 query points with 7 correspondences) in patch 2 for A3.
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Figure 3. Visualization of the deformation field. We show four examples from 2/3/4 chamber (CH) view and short axis (SAX) view. For
each view, we show the tMR/cMR image in (a), the registered cMR by different methods and corresponding deformation field (white grid)
in (b)~(i). Red/yellow contour shows the ground truth/warped myocardium wall on tMR/(warped) cMR. The right top of each (warped)
c¢MR shows the Dice score. Pink grid shows the identity deformation field near the left ventricle area. We overlap the identity deformation
field with the predicted field for convenient comparison.



