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In this supplementary material, we provide the imple-
mentation details, such as our MLP architecture, and hyper-
parameters. We show additional qualitative and quantitative
results. Finally, we evaluate our model for 3D shape re-
construction from single-view silhouettes and compare the
results with DIST’s [7].

A. Implementation Details
In this section, we provide details about our training, in-

ference, network architecture, and hyperparameters.
Training: We train a model for each of the 6 classes of

the ShapeNet dataset with the splits from DeepSDF [9]. We
use a batch size of 64 and 4096 samples per scene. We train
for 3000 iterations for classes with less than 3000 shapes,
and 2000 iterations otherwise. Each batch takes about 2.5s
on an Nvidia A100 GPU. Depending on the number of
shapes in a class it takes 1 � 4 days to train a model per
class. We do not train the SDF model with the Track-SDF
regularizer in Eq. 10 (main). We truncate the SDF values
for better shape representations [9].

Inference: We run all the inference tasks on an Nvidia
A40 GPU both for ours and DIST [7] to ensure that the
optimization and rendering performance we report are con-
sistent.

A.1. Hyperparameters
We optimize the losses during both training and infer-

ence with ADAM [5] algorithm in Pytorch [10]. Dur-
ing training, we set the weights ws = 1.0, wd = 1.0,
w� = 1.0, wtv = 100.0, wts = 0.1, and wl = 0.0001
respectively for SDF loss, DDF loss, Ray hit loss, TV reg-
ularizer, Track-SDF regularizer, and latent code regularizer.
We train our models with a learning rate of 0.0005 and our
latent codes with a learning rate of 0.001. After every 750
or 500 iterations (for 3000 or 2000 total iterations, respec-
tively), we divide the learning rate by 2. During inference,
for 3D reconstruction from single-view depth maps, we set
wS = 1.0, wD = 1.0, and wl = 0.0001 for the silhou-
ette loss, the depth loss, and the latent regularizer respec-

tively. For 3D reconstruction from single-view silhouettes,
we set wS = 1.0, wD = 0.0, and wl = 0.005. We run
our algorithm for 1000 iterations with a starting step size of
0.001 and a step size of 0.0005 after 500 iterations. We set
a threshold of 0.8 for DDF ray hit prediction for rendering.
We extract meshes at the level-set of SDF, s = 0.001. Sim-
ilar to DeepSDF [9], we set a truncation distance ⌧ = 0.1.
In other words, SDF values that are more than 0.1 are set
to 0.1 and those less than �0.1 are set to �0.1. We use the
released code and parameters of DIST [7] and IF-NET [1]
for comparisons.

A.2. Network Architecture
DDF Model (fd):
2D Feature Grids: For each of the 15 feature grids, we set
a resolution of 512 ⇥ 512 and a feature dimension of 32.
MLP: The MLP in the DDF model consists of 3 blocks of
fully-connected layers. Each fully-connected block has 1
hidden layer of 512 dimension. There are skip connections
to each block from the input. We use ReLU activations for
the outputs of all the layers except the last layer where we
use no activation function. We positionally encode [8] each
dimension of the input points and direction tuple with 3 fre-
quencies.
SDF Model (fs):
2D Feature Grids: For each of the 3 feature grids, we
set a resolution of 512 ⇥ 512 and a feature dimension of
32. MLP: The MLP in the SDF model consists of a fully-
connected block with 2 hidden layers of 256 dimension. We
use ReLU activations for the outputs of all the layers except
the last layer where we use no activation function. We posi-
tionally encode [8] each dimension of the input points with
3 frequencies.

A.3. Quantitative Evaluation Metrics
We extract meshes at a resolution of 2563 using march-

ing cubes to evaluate our SDF reconstructions quantita-
tively. To evaluate our DDF reconstructions, we first ran-
domly sample points on the unit sphere and directions. We
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use rejection sampling by means of the ray hit predictions
from our DDF model to obtain point-direction pairs that
hit the object’s surface. We obtain a point for each point-
direction pair using o+dr where (o, r) is the point-direction
pair that points to the surface and d is the predicted direc-
tional distance. We use the symmetric L2 chamfers distance
as the metric for our quantitative experiments, i.e.

CD =
1

N
⌃N

i=1 min
y2Y

kxi � yk22 +
1

N
⌃N

i=1 min
x2X

kx� yik22 ,
(1)

where X = {xi 2 R3| i = 1 , . . . , N} and
Y = {yi 2 R3| i = 1 , . . . , N} are points on the sur-
faces of two shapes, and N is the number of points sampled
on the two shapes. We compute chamfer’s distance between
30000 points from the two sets in the ShapeNet dataset’s
scale similar to DeepSDF [9].

B. Experiments
In this section, we show additional qualitative results on

3D shape reconstruction from depth maps in Fig. 5. We
show qualitative results on our DDF model evaluations of
the state-of-the-art directional distance models in Fig. 3. We
show results on reconstructing shapes from synthetic and
real-world videos using our trained model in Sec. B.1, fol-
lowed by shape reconstruction from silhouette experiments
in Sec. B.2. Finally, we provide details about our visualiza-
tions in Sec. C.

Ours DIST
Class SDF DDF Time (s) DeepSDF Time (s)
Cars 0.62 0.48 2.59 0.69 29.54
Planes 1.60 1.58 2.59 1.44 30.18
Sofas 1.80 1.87 2.50 1.82 29.89

Table 1. Quantitative results (1000⇥ CD) of 3D reconstruction
from video sequences in PMO [6]. Our method is on average 12⇥
faster than DIST [7] while being as accurate.

B.1. Reconstruction from Videos
While our representation performs well with the algo-

rithm that we propose, we evaluate its capacity to acceler-
ate existing algorithms. Towards that, we replace the sphere
tracer in DIST’s reconstruction from videos of PMO [6]
dataset. We are given camera poses for the frames without
object masks. We optimize for the latent code as

argmin
z

N�1X

i=0

X

j2Ni

kIi � Ij!i(f(z))k+ Ls+(�) + Ls�(�) ,

where N = 72 is the number of frames of the video,
Ii is the ith image and Ij!i is an image formed using
pixel colors warped from image j to i using the rendered
depth, f(z), obtained from DDF model as (f(z),�) =

fd((p, r), z, fpd;⇥d) (see Eq. (5), main), � 2 {0, 1} is
the predicted mask, and Ni is the neighborhood of frame
i. We enforce the constraints LSs+

(�) and LSs�
(�), from

Eqs. (16) and (17) (main) using predicted masks (�) to en-
sure that the predicted SDF surface follows DDF. We show
the qualitative results in Fig. 1. We show quantitative re-
sults in Tab. 1. As corroborated in the ablations (wo LS),
our algorithm performs similarly compared to DIST when
ground truth masks are unavailable. However, as we do not
need to perform the expensive sphere tracing in each itera-
tion, our method is 12⇥ faster. This shows the potential of
our trained DDF model to replace sphere tracing in existing
algorithms for an order of magnitude acceleration.

Reconstruction from real-world videos: We show
qualitative results on reconstruction from 40 real-world
videos of chairs from the Redwood dataset [2] in Fig. 2.
We optimize for the photometric consistency across frames
using the depth predicted by our model. As the dataset con-
sists of reconstructed meshes of entire scenes, we can eval-
uate the distance from the predicted shape using our model
to the ground mesh. The mean distance is 4.0cm.

B.2. Shape from Silhouettes

We evaluate our method on the challenging task of re-
constructing 3D shapes from single-view silhouettes with
a given camera pose. The task is much more challenging
compared with reconstructing from single-view depth maps
as we have no information about the shape of an object apart
from a silhouette in an image.

We optimize for shape with the 3D reconstruction from
the single-view depth maps algorithm, presented in Sec. 3.4
of the main paper, without the depth loss, i.e., wD = 0.0.
We compare with DIST [7] for this task while setting the
weight of the depth loss in DIST’s reconstruction algorithm
to 0.0. We test on the same test split as in 3D reconstruction
from depth maps, i.e., the first 200 shapes from test splits
of each category and the first image from the test dataset of
3D-R2N2 [3].

Results: We show qualitative results of reconstructing
3D shape from a silhouette in Fig. 4. We show the quan-
titative results in Tab. 2. We report 1000⇥ the L2 cham-
fer distance (see Sec. 4.3, main paper) between the recon-
structed and ground truth meshes. Our method outperforms
DIST [7] in all classes. As can be seen, our algorithm re-
constructs more plausible shapes as our DDF model’s ray
hit output can be used to fit our models to the given sil-
houettes, as corroborated by the reconstruction accuracy of
DDF. Further, as our DDF model is trained using the Track-
SDF loss and as our models share a latent space, our SDF
reconstructions are more accurate compared with DIST’s
reconstructions.



Video Ref. GT Ours (DDF) Ours (SDF) DIST Video Ref. GT Ours (DDF) Ours (SDF) DIST

Figure 1. Qualitative results of 3D reconstruction from videos of PMO [6]. In both columns, Left to right: a frame from the input video,
reference ground truth geometry, 1 forward pass renders from our DDF, our SDF reconstructions, and reconstructions with vanilla DIST’s
algorithm. When we replace the raymarching algorithm in the vanilla implementation (DIST [7]) with our DDF model, the algorithm is
accelerated by about 12⇥ as our model only needs 1 forward pass through the network per ray to render.

Video Ours (DDF) Ours (SDF) Ours (DDF) Ours (SDF)

View 1 View 2

Figure 2. Qualitative results of 3D reconstruction from 40 real-
world videos of chairs from Redwood dataset [2]. We reconstruct
chairs by optimizing for photometric consistency between differ-
ent frames of videos using the depth predicted by our model. Left:
A frame from the input video. Right: DDF renders and recon-
structed SDF in two views. The average distance from the pre-
dicted shape to the ground truth mesh is 4.0cm.

C. Visualizations
For the results named “DDF Renders” or “DDF Recon-

structions”, we visualize the results of our method with one
evaluation of DDF per ray. We obtain the silhouette pre-
dicted by the DDF model and use the SDF model to com-

Ours Ours DIST Ours Ours DIST
DDF DDF

1000⇥ CD # (Mean) 1000⇥ CD # (Median)
Car 0.99 0.75 1.53 0.90 0.51 1.16
Chair 2.70 2.06 7.84 1.93 1.51 4.58
Lamp 6.91 8.02 11.92 3.81 4.33 5.19
Plane 0.74 0.78 5.74 0.45 0.40 4.22
Sofa 2.08 2.33 3.82 1.69 1.62 2.18
Table 3.25 1.97 5.95 2.37 1.28 3.35

Table 2. Quantitative results on 3D shape reconstruction given a
silhouette. Our method outperforms DIST [7] in all the classes by
a large margin as our DDF model predicts silhouette along with
directional distance. Further, as the DDF model is trained to track
the surface predicted by SDF model, both our DDF and SDF mod-
els can reconstruct from silhouettes better than the state-of-the-art.

pute the surface normals for shading. The rendering time
we reported in the main paper includes the time to compute
normals using finite differences. We use sphere tracing to
show our 3D reconstructions, and the results of DIST [7].
We show reconstructed meshes for IF-NET [1]. We render
meshes of IF-NETs for visualizations, and 3D-R2N2’s test
data set for obtaining depth maps and masks with the help
of Trimesh [4]. For shading, we use an accelerated version
of Blinn-Phong shader from i3DMM’s code [11].
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Figure 3. Qualitative results of model evaluation against PRIF, Depth-LFN, and NeuralODF on shape reconstruction from a given depth
map. Each column shows reconstruction results for different shapes. Top rows: given depth map (top), ground truth geometry for reference
(bottom). Middle-top rows: views rendered with 1 forward pass from our DDF model (top) and views of 3D shapes reconstructed from our
SDF model (bottom). Middle rows: views rendered with 1 forward pass from PRIF model. Middle-bottom rows: views rendered with 1
forward pass from Depth-LFN model. Bottom rows: views rendered with 1 forward pass from NeuralODF model. We shade competitive
models by estimating normals from rendered depth. As can be seen, our model results in more view-consistent shapes with better geometric
details, given that we couple our DDF model with the SDF model. (Depth-LFN did not converge for lamps class.)
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Figure 4. Qualitative results of 3D shapes reconstructed from a given silhouette. Each column shows reconstruction results for different
shapes. Top rows: given silhouettes and meshes (for reference). Upper-middle rows: reconstructed views rendered with 1 forward pass
of our DDF model per camera ray. Middle rows: views of 3D shapes reconstructed by our SDF model. Last rows: views of 3D shape
reconstructed using DIST [7].
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Figure 5. Additional qualitative results of 3D reconstruction from single-view depth maps discussed in Sec. 4.2 of the main paper. Each
column shows reconstruction results for different shapes. Top row: given depth map. Upper-middle rows: views rendered with 1 forward
pass from our DDF model. Middle rows: views of 3D shapes reconstructed by our SDF model. Lower-middle rows: views of 3D shape
reconstructed using DIST [7]. Last rows: views of 3D shapes reconstructed using IF-NET [1].
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