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(a) The images from VKITTI 2 dataset. It contains 5 scenes (Scene 1, 2, 6, 18, and 20) and each scene has 6 domains (Clone, Fog, Morning,
Overcast, Rain and Sunset).

FlyingThings3D (Clean pass) FlyingThings3D (Final pass)

cvpr 23 supple

Sintel (Clean pass) Sintel (Final pass)

KITTI 2015

(b) The images from FlyingThings3D, Sintel, and KITTI 2015 dataset.

Figure s.1. Dataset visualization.

A. Appendix
We include implementation details for reproducibility

and also provide additional experimental results and anal-
yses in this supplementary material.

A.1. Implementation details

We examine the effectiveness of our proposed method in
multiple combinations of experimental settings. This sec-

tion clearly states the datasets and detailed setups used for
the experiments in the main paper.

Datasets. In Figure s.1a, we visualize the examples of
VKITTI 2 [2]; the images are arranged to recognize the do-
main differences easily. The figure shows that the images
from a scene share the same flow map, but their domains
are significantly different. As can be seen in Table 1 of the
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Table s.1. Details for training our model. C + T represents that we bring the model pretrained on FlyingChairs + FlyingThings3D.

Training data Base network Weights Learning rate Batch size Weight decay Crop size

Source Target

VKITTI(Clone) VKITTI
FlowNetC - 1e-4 8 4e-4 [320, 448]
FlowNetS - 1e-4 8 4e-4 [320, 448]
RAFT - 4e-4 4 1e-5 [288, 960]

FlyingThings3D Sintel RAFT C + T 1e-4 4 1e-4 [400, 720]
FlyingThings3D KITTI RAFT C + T 1e-4 4 1e-4 [288, 720]

Input image Ground truth Clean Final
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Figure s.2. Qualitative results of Sintel test split using our method with RAFT baseline.

main paper, the performance of ordinary optical flow mod-
els trained on one domain of this dataset significantly de-
grades on another domain. Figure s.1b describes the images
from FlyingThings3D [9], Sintel [1], and KITTI 2015 [4]
datasets. There also exist apparent differences among the
three datasets.

Baselines. We utilize open-source PyTorch [10] imple-
mentation of FlowNet [3] 1. To reproduce RAFT [11], we
follow the official PyTorch implementation 2. In case of
FS [5], we bring the official TensorFlow implementation 3.
For all Baseline + AT and Baseline + GST experiments, we
use the hyper-parameter values that make the model per-
form the best. Specifically, in VKITTI 2, the value of λadv

1https : / / github . com / ClementPinard /
FlowNetPytorch

2https://github.com/princeton-vl/RAFT
3https://github.com/iwbn/flow-supervisor

is 0.1 for FlowNet and 0.01 for RAFT. The value of λcons is
0.01 for FlowNet + GST and 0.1 for RAFT + GST. In Sintel
and KITTI 2015 experiments, we set the value of λadv and
λcons to 0.001 and 0.01, respectively, for RAFT + GST.

Training details. Our training details are summarized in
Table s.1. In the VKITTI dataset, we train our model and
baselines from scratch. In the case of Sintel and KITTI, we
deploy the model trained on FlyingChiars and FlyingTh-
ings3D (C + T). As stated in Section 4 of the main paper,
we use Adam [6] and AdamW [8] optimizers for FlowNet
and RAFT, respectively. The learning rate starts at 1e − 4,
except for RAFT in the VKITTI 2 dataset. We set the batch
size to 4 for Sintel and KITTI experiments. The specific de-
tails of weight decay and crop size are denoted in Table s.1.
We follow the same augmentation technique with the base-
lines.

https://github.com/ClementPinard/FlowNetPytorch
https://github.com/ClementPinard/FlowNetPytorch
https://github.com/princeton-vl/RAFT
https://github.com/iwbn/flow-supervisor


Table s.2. Average End Point Error (AEPE) results of Fog domain
in VKITTI dataset for searching optimal hyper-parameters.

λadv

λcons 0.001 0.01 0.1

0.01 6.28 6.29 6.55
0.1 5.22 5.35 5.25
1 4.55 4.66 4.64

Table s.3. Average End Point Error (AEPE) results of Overcast
domain in VKITTI dataset for searching optimal hyper-parameters
of flow supervisor.

α
λTU 0 0.1 0.4 0.7 1

0.4 1.71 2.13 1.98 2.08 2.02
0.7 1.52 2.00 2.09 2.03 2.12
1 1.52 2.28 2.21 2.02 1.98

Table s.4. The selection of patch sizes according to the dataset and
the network.

Dataset FH Base net. FH
2

FH
4

FH
8

FH
16

FH
32

VKITTI
160 FlowNetC ✓ ✓ ✓
160 FlowNetS ✓ ✓ ✓
144 RAFT ✓ ✓ ✓

Sintel 200 RAFT ✓ ✓ ✓

KITTI 144 RAFT ✓ ✓ ✓

Hyper-parameters. We diversify the value of hyper-
parameters λadv and λcons for searching their optimal value.
As shown in Equation 12 in the main paper, λadv is the
weighting parameter of the flow adversarial loss (Ladv),
and λcons is for both motion consistency losses (Lcorr

consist and
Lpred

consist). Table s.2 shows experimental results for searching
optimal hyper-parameters using FlowNetS in Fog domain
of VKITTI dataset. We set λadv to 1 and λcons to 0.001 ac-
cording to the results in Table s.2. We use the same value
in all weather domains for FlowNetS. As Table s.2 shows,
λadv is more sensitive than λcons. This is because, the bal-
ance of the generator and the discriminator of adversarial
learning is influential in a whole training process. Simi-
larly, we select 0.1 and 0.01 for FlowNetC and 0.001 and
0.001 for RAFT as the value of λadv and λcons. In other ex-
periments, we set the value of λadv and λcons to 0.01 and 0.1
for Sintel(clean), 0.01 and 0.01 for Sintel(Final), and 0.001
and 0.01 for KITTI. We also search hyper-parameters on
VKITTI dataset for flow supervisor. We change the value
of α and λTU for finding their optimal value. We set α to
0.7 and λTU to 0 according to the results in Table s.3.

Patch size We specify the sets of patch sizes used for
training our models in Table s.4. We represent the types of

the patch size by dividing the height of the feature map into
two to the n-th power. Specifically, we select three kinds of
patch sizes among the set S = { FH

2 , FH
4 , FH

8 , FH
16 ,

FH
32 }. FH

represents the height of the feature. If the patch size be-
comes an even number, we add one to the patch size.

B. Additional experimental results.
Qualitative results of the Sintel test split. Figure s.2
shows the qualitative results of the Sintel test split. In this
section, we utilize the model trained using Sintel(train) as
a target. Images from the Sintel test split are not used for
the training. The qualitative results of the third and fourth
columns indicate the results of the clean-targeted and final-
targeted models, respectively. Although our model does not
exploit flow annotations, it successfully predicts fine flow
fields.

Comprehensive ablation study. In this supplementary,
we report all the domain scenario results of the ablation
study in Table 3 in the main paper. As we can see from
the average results of Table s.5, our proposed components
(TST, MCL, and FAL) show their ability to decrease the do-
main discrepancy. The effect of our components is more in-
fluential in the target domain where the discrepancy is large
(i.e., Fog and Rain) than in the one with a small domain gap.

t-SNE visualization. Along with the t-SNE visualization
experiment in Section 4.5 of the main paper, we present ad-
ditional visualizations of embedding spaces for every do-
main in the VKITTI dataset in Figure s.4. This visualization
validates the properties of the synthetic target feature gen-
erated by the TST module and its effectiveness for training
the model. Before training the model, our TST module gen-
erates the synthetic target points (yellow) close to the target
points (green). It thus assists the model to be easily adapted
to the target domain, as shown in the figure. After training
the model with our method, as shown in the second embed-
ding spaces of Figure s.4, the model successfully extracts
domain-invariant features in all target domains.

Quantitative results of source domain We also conduct
an experiment using VKITTI dataset to evaluate the perfor-
mance on the source domain after adapting an optical flow
model to a target domain. In this experiment, each optical
flow model trained on the Clone domain (source) is adapted
by our method to the target domain, and its performance
is evaluated on the Clone domain. The quantitative results
are summarized in Table s.6; note that all the numbers in
the table are the AEPE performances on the Clone domain.
For example, the third row shows that the performance of
RAFT model trained on Clone domain is 0.64 AEPE when
it is evaluated on Clone domain without any adaptation. In



Table s.5. Comprehensive ablation study on all domains of the VKITTI 2. We exploit FlowNetC and select Clone as the source domain.

LST
epe Lcorr

consist Lpred
consist Ladv Fog Morning Overcast Rain Sunset Avg.

48.53 6.32 9.07 15.18 6.58 17.14
✓ 6.06 4.27 4.75 6.91 4.41 5.28
✓ ✓ 5.36 4.38 4.52 5.53 4.24 4.81
✓ ✓ 4.95 4.43 4.42 5.60 4.22 4.73
✓ ✓ ✓ 5.20 4.27 4.54 5.43 4.16 4.72
✓ ✓ ✓ ✓ 4.91 4.37 4.49 5.39 4.28 4.69

Table s.6. The Average End Point Error (AEPE) performance on
the source domain after adaptation.

Method No adapt Target domain

Fog Morning Overcast Rain Sunset

FlowNetS [3] 4.04 2.80 2.76 2.76 2.81 2.81
FlowNetC [3] 2.92 2.72 2.70 2.69 2.68 2.75
RAFT [11] 0.64 0.55 0.55 0.55 0.54 0.55

comparison, the model’s performance becomes 0.55 AEPE
on the Clone domain after adapting to the Fog domain using
our method. Interestingly, after domain adaptation to other
target domains, all the models improve even on the source
domain, which implies that our adaptation process involv-
ing additional target data can act as data augmentation and
improve generalization.

Without the C + T pretrained model. In the Sintel and
KITTI experiments of the main paper, we use the model
pretrained on FlyingChairs and FlyingThings3D (C + T in
Table s.1). In this experiment, we aim to adapt the model
to Sintel (or KITTI) from scratch; i.e., we did not load the
weights of the C + T pretrained model at the beginning of
the training. We use the same experimental setting (e.g.,
batch size, learning rate, and weight decay) as our experi-
ment in the main paper. Table s.7 shows that our method
outperforms when the pretrained model is not utilized. As
stated in the main paper, the reason for this performance
gap is that FS trains the model (student) using a supervi-
sor’s (teacher’s) predictions. As the quality of the supervi-
sion primarily depends on the supervisor’s performance, the
existence of the pretrained model is critical for FS. On the
other hand, our method is relatively free from this disadvan-
tage because we use synthetic target features, of which an-
notations are from ground truth flows, as supervisions rather
than a model’s predictions.

Multiple source to target domain scenarios. There are
six domains in VKITTI dataset: Clone, Fog, Morning,
Overcast, Rain, and Sunset. To sufficiently demonstrate
the domain adaptability of our model, we conduct experi-
ments of all source-to-target domain scenarios in Table s.8.
Among multiple baselines, we compare RAFT, RAFT+FS,

Table s.7. The experiment without using the C + T pretrained
model.

Method Sintel KITTI

clean final EPE F1

RAFT + FS 3.69 4.77 13.06 38.70
RAFT + ours 1.67 2.90 6.41 21.36

Table s.8. Multiple source to target domain scenarios in VKITTI.

RAFT Clone Fog Morning Overcast Rain Sunset Avg.
Clone – 2.01 1.35 1.07 2.21 1.02 1.53
Fog 2.63 – 2.48 1.46 2.69 2.46 2.34

Morning 1.21 1.91 – 0.97 1.93 0.95 1.39
Overcast 2.38 2.11 2.03 – 1.23 1.86 1.92

Rain 2.47 1.45 2.48 0.80 – 1.98 1.84
Sunset 1.16 2.12 1.12 1.05 2.27 – 1.54
Avg. 1.97 1.92 1.89 1.07 2.07 1.65 1.76

(a) The Average End Point Error (AEPE) of RAFT model.

RAFT+FS Clone Fog Morning Overcast Rain Sunset Avg.
Clone – 1.73 1.51 1.52 1.63 1.44 1.57
Fog 2.30 – 2.83 1.94 1.70 1.96 2.15

Morning 1.70 2.26 – 1.91 1.78 1.76 1.88
Overcast 1.82 1.88 1.83 – 1.72 1.78 1.81

Rain 1.70 1.66 2.01 1.85 – 1.79 1.80
Sunset 1.58 3.11 2.16 1.69 3.51 – 2.41
Avg. 1.82 2.13 2.07 1.78 2.07 1.75 1.94

(b) The Average End Point Error (AEPE) of RAFT+FS model.

RAFT+ours Clone Fog Morning Overcast Rain Sunset Avg.
Clone – 1.48 0.99 0.84 1.46 0.82 1.12
Fog 1.98 – 2.04 1.30 1.40 2.02 1.75

Morning 1.03 1.61 – 0.79 1.70 0.80 1.19
Overcast 1.68 1.43 1.40 – 1.01 1.46 1.40

Rain 1.47 1.09 1.51 0.65 – 1.35 1.21
Sunset 0.98 1.63 0.89 0.87 1.96 – 1.27
Avg. 1.43 1.45 1.37 0.89 1.51 1.29 1.32

(c) The Average End Point Error (AEPE) of RAFT+ours model.

and RAFT+ours. The results of the three models in Ta-
ble s.8 indicate that our model outperforms in all domain
scenarios. It also highlights that our method is flexibly
adaptable to every source-to-target adaptation scenarios.
Note that RAFT+FS is less effective than RAFT when the
source domain is Morning or Sunset. We assume this is be-
cause pseudo labels extracted from FS distract the model
when the source domain is Morning or Sunset.
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Figure s.3. Qualitative results of failure cases on Sintel and KITTI datasets.

Table s.9. Comparison with more related work in Fog and Rain
domains in VKITTI.

Method Fog Rain
RainFlow [7] – 8.27
Yan et al. [12] 1.60 –
RAFT 2.01 2.21
RAFT + ours 1.48 1.46

Comparison with more related work. We also address
comparisons to related work [7, 12], which only deals with
their specific target domains. According to Table s.9, our
method prevails over previous work as well as being ca-
pable of covering multiple target domains. In addition,
ours can be applied to various optical flow networks (e.g.,
FlowNetS, FlowNetC, and RAFT), thus continuously en-
abling the model to improve its performance.

Qualitative results of failure cases. Figure s.3 illustrates
the qualitative results of failure cases on the Sintel and
KITTI datasets. The proposed method encounters problems
in estimating optical flows for two bamboo objects due to
their similar appearance (e.g., texture and color). Similarly,
in the second row, the proposed method struggles to capture
the motion of a bamboo. In the last row, the method fails
to capture optical flows in a low-light scene. The reason is
insufficient low-light images to address the domain gap of
low-light scenarios within the KITTI dataset.
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Figure s.4. t-SNE visualization of the source, target, and synthetic target features. We deploy VKITTI dataset and use FlowNetC for our
base network.


