
EVOLVE: Enhancing Unsupervised Continual Learning with Multiple Experts
Supplementary Material

In the supplementary material, we include more details
on the following aspects:

• In Section 1, we discuss the connections and differ-
ences between EVOLVE and a typical online optimiza-
tion problem.

• In Section 2, we list the implementation details of
EVOLVE, the self-supervised learning baselines and
the continual learning baselines.

• In Section 3, we provide details on data setup and how
to construct data streams from each dataset.

• In Section 4, we show that EVOLVE is capable of sur-
passing the best expert if trained with multiple epochs.
With both self-supervised learning and expert-guided
learning, EVOLVE is not bounded by the performance
of experts.

• In Section 5, we present additional accuracy results as
a complement to the results in the main paper.

• In Section 6, we show additional visualization for
dynamic weight update using Multiplicative Weight
(MW) Update and EVOLVE.

• In Section 7, we conduct more sensitivity experiments
on the hyperparameters λ and α.

• In Section 8, we analyze the time complexity of
EVOLVE.

1. Connection to Online Optimization

The proposed expert aggregation and dynamic weight
adjustment have close connections to the MW algorithm
[1,4] in online optimization. In particular, the proposed un-
supervised continual learning with multiple experts can be
rewritten as an online optimization problem [4]:

1. At timestamp t, given the sample xt, the task is to pre-
dict one augmentation xA

t = tA(xt) from augmen-
tation xB

t = tB(xt), where tA(·) and tB(·) are two
random augmentations.

2. Each expert e makes a prediction qte ∈ [0, 1]. The loss
incurred by the expert e can be calculated as ℓte = |1−
qte|.

3. Each expert has a weight wt
e. The prediction of the

learner is:

qt =

∑
e w

t
eq

t
e∑

e w
t
e

(1)

which is the aggregated predictions of all experts,
weighted by the corresponding weights. The loss in-
curred by the learner can be computed as ℓt = |1−qt|.

4. Intuitively, if the expert e has a higher loss, the con-
tinual learner should decrease its weight. The weight
update can be written as,

wt
e = wt

e + (1− α)(qte − wt
e) (2)

5. At timestamp T , the cumulative regret of the continual
learner with respect to the expert e can be written as,

Le =

T∑
t=1

(lt − lte) (3)

It is important to recognize that our approach differs
from online optimization in that our objective is not only to
minimize regret with respect to the best expert. Rather, we
seek to leverage the experts to guide the continual learning
process that leads to improved representations, especially in
scenarios where prior knowledge is limited. In contrast to
the MW algorithm, our proposed method places greater em-
phasis on the current predictions of the experts. As a result,
it exhibits greater responsiveness to dynamic shifts in data
streams. For further comparative insights between the MW
algorithm and our proposed update, refer to Fig. 2.

2. Implementation Details
2.1. Implementation of EVOLVE

The hyperparameters of EVOLVE across all datasets are
summarized in Table 1. The values for learning rate lr,
batch size b, memory buffer size m and batch size for sam-
pled memory data bM are the same as in [11]. For all meth-
ods in EVOLVE, we use SGD optimizer with a learning rate
of 0.03, a momentum of 0.9 and a weight decay of 1e−4 as
reported in [11]. The selection of hyperparameters α and λ
is based on a validation set.

1

Table 1. Hyperparameters of EVOLVE in all datasets.

Param. Meaning Value

lr Learning rate 0.03
b Batch size for streaming data 128
m Memory buffer size 256
bM Batch size for sampled memory

data
128

τ Temperature for the confidence
metric

0.1

α Decay rate to update each ex-
pert’s confidence

0.95

λ Relative weight for SSL and ex-
pert aggregation loss

1.0

Data augmentation. The two-way augmentation is a piv-
otal element within the SSL backbones adopted in EVOLVE,
a common practice in self-supervised learning [2,5,6,9,19].
Recognizing the informative potential of augmentation, we
highlight that we use the general augmentation techniques
for image datasets. Consistency is maintained as the identi-
cal augmentation procedure is implemented across all meth-
ods for a given dataset.

During the training phase, our data augmentation proce-
dure normalizes the data using mean and variance. All data
are resized to 32 × 32.

• For CIFAR-10, we apply a random scaling 0.2-1, a ran-
dom horizontal flip, a random color jitter of brightness
0.6-1.4, contrast 0.6-1.4, saturation 0.6-1.4, hue 0.9-
1.1, and a random gray scale with p = 0.2.

• For TinyImageNet, we apply a random scaling 0.08-1
with random aspect ratio 0.75-1.33 and bicubic inter-
polation.

• For both CORe50 and Stream-51, we apply a random
horizontal flip.

During the evaluation phase, we only normalize and re-
size the data but do not use any other augmentations.

2.2. SSL Baseline Implementation

In Section 4 of the main paper, we experiment the fol-
lowing state-of-the-art self-supervised learning baselines
which are adapted from their official implementations:

• SimCLR [5] uses a Siamese structure and enhances
the similarity between augmented pairs of the same
sample. We set temperature τ = 0.1.

• SimSiam [6] uses a simple Siamese structure with a
stop-gradient operation to avoid collapsing.

• BYOL [9] creates a target network via moving average
and learns without collapsing by predicting the repre-
sentation of the target network. The moving average
decay for target network updates is set to 0.99.

• BarlowTwins [19] improves representation learning
by aligning the cross-correlation matrix (between the
two branches of the Siamese network) with the iden-
tity matrix. The coefficient for off-diagonal elements
is 5e−3 as in the original implementation.

• VICReg [2] further improves BarlowTwins by adding
extra invariance and variance loss terms. The co-
efficients for the invariance, variance and covariance
terms are 25.0, 25.0 and 1.0 respectively.

2.3. Implementation of Unsupervised Continual
Learning Baselines

The following unsupervised continual learning baselines
are used to compare with SCALE:

• PNN [16]: Progressive Neural Network gradually ex-
pands the network architecture.

• SI [20]: Synaptic Intelligence performs online per-
synapse consolidation as a typical regularization tech-
nique.

• DER [3]: Dark Experience Replay retains existing
knowledge by matching the network logits across a se-
quence of tasks.

• CaSSLe [8] proposes a general framework that ex-
tracts the best possible representations invariant to task
shifts.

• LUMP [11] interpolates the current batch with the
memory samples to alleviate catastrophic forgetting.

We did not compare with STAM because their architecture
needs dataset-specific tuning and the original paper did not
consider large image-based or video-based datasets [17].

More implementation details are grouped and summa-
rized as follows:

• PNN, SI, DER, LUMP are adapted from the official
framework in [11] using their default hyperparame-
ters1. PNN, SI and DER are originally designed for
supervised lifelong learning but are adapted to ULL
tasks as described in the paper. For DER and LUMP,
we use the identical memory size m and batch size for
memory samples bM as EVOLVE.

• We use a modified version of CaSSLe based on the
original implementation2. Specifically, we remove
task labels and the model is used to predict the repre-
sentations generated by a frozen model from the previ-
ous time stamp, from the current representations. The
predictor network is implemented as a two-layer MLP
with 2048 hidden neurons and ReLU activation as the
predictor network to predict the past representations
from the current ones.

1https://github.com/divyam3897/UCL
2https://github.com/DonkeyShot21/cassle

3. Data Stream Construction

In this section, we detail our dataset setup and data
stream construction. For each of the four data sets, we test
all the methods on the sequential class-incremental streams
(Seq) and the sequential imbalanced class-incremental
streams (Seq-imb).

• CIFAR-10 [12] and TinyImageNet [7]. To construct
the Seq stream, we sample 5000 and 500 samples from
each class in CIFAR-10 (10 classes in total) and Tiny-
ImageNet (100 classes in total), then feed them class
by class to the model. The order of samples inside
each class is random. The setup of the Seq-imb stream
is almost the same, except that for each class, we ran-
domly sample a subset that has more than half of the
total samples in that class. Specifically, suppose that
there are U samples in that class. We first uniformly
sample an integer V ∈ [0.5U,U], then randomly se-
lect V samples from that class.

In CIFAR-10, we split the original test data set, using
9,000 samples for testing and 1000 samples for valida-
tion. In TinyImageNet, the total number of samples for
testing and validation is 4500 and 500, respectively.

• CORe50 [10]. CORe50 is a video dataset for classi-
fying 50 domestic objects held by the operator. The
dataset has been collected in different environments
with different backgrounds and lighting, which are for-
mulated to 11 distinct sessions (8 indoor and 3 out-
door). For each session and for each object class, a
15 seconds video (at 20 fps) has been recorded with a
Kinect 2.0 sensor delivering 300 RGB-D frames.

We generate the Seq streams following the most chal-
lenging New Instances and Classes (NIC) sequence
setting in the original paper. NIC introduces both new
classes and new instances (under different sessions) in
subsequent training batches. A good model is expected
to consolidate its knowledge about the known classes
and to learn the new ones under the shift of environ-
ments. CORe50 has a balanced distribution among
different classes, and we sample an equal amount of
960 samples from each class to construct the training
Seq streams, and 180 samples per class for evaluation.

The Seq-imb streams for CORe50 follow exactly the
same temporal order as the Seq streams, while we
randomly sample a subset from the sequence of each
class. The method we employ to determine the subset
size aligns with that of CIFAR-10 and TinyImageNet.

For evaluation, we randomly sample separate sub-
sets of 9,000 and 1000 images from the original test
dataset, then use them for testing and validation.

• Stream-51 [15]. Stream-51 is a recently introduced
video dataset tailored for continual learning, encom-
passing temporally correlated images across 51 dis-
tinct object categories. Our focus is on the Seq-imb
streams within Stream-51, given the inherent class im-
balance in the dataset. Following the dataset’s tempo-
ral order, we stochastically sample 40% of the train-
ing data, resulting in 60,000 training samples. Evalua-
tion employs the original Stream-51 test dataset, which
encompasses both familiar and novel categories in an
open set classification context. Specifically, we engage
with all images pertaining to the known 51 categories
within the test dataset. Upon partitioning, we allocate
2400 samples for testing and 500 samples for valida-
tion.

4. Comparison with the Best Expert
One important question is whether, guided by pretrained

expert models, EVOLVE can achieve comparable or even
superior performance compared to the best expert. The an-
swer is affirmative. In this experiment, we assess multi-
ple epochs over the data at each timestamp, resembling the
context of offline unsupervised continual learning [13,14,
18]. Fig.1 illustrates EVOLVE’s kNN training accuracy over
10 epochs across all four datasets in the iid stream. This is
compared with the kNN accuracy of the expert models, in-
dicated by dashed horizontal lines.

Remarkably, EVOLVE outperforms the best expert in
CIFAR-10 and CORe50, and closely approaches the per-
formance of the best expert in TinyImageNet and Stream-
51. Notably, while all experts employ sophisticated struc-
tures like ResNet-50 and the Swin Transformer, EVOLVE
achieves this using the considerably smaller ResNet-18
model. EVOLVE has two components of self-supervised
learning and expert-guided learning, allowing it to continu-
ously improve beyond experts.

5. Complete Accuracy Results
As a complement to the accuracy results in the main pa-

per, we present the rest accuracy results at the end of the
supplementary material. In the paper, we focus on the se-
quential streams which aligns with real-world scenarios.
Tab. 2-4 summarize the accuracy results on Seq CIFAR-
10, TinyImageNet and CORe50 respectively. Note, that
Stream-51 comes with imbalanced samples thus is evalu-
ated only for the Seq-imb streams. Tab. 5 shows the accu-
racy results on Seq-imb CIFAR-10.

For each setting, SSL acts as a backbone while additional
continual learning techniques may improve or degrade the
performance of SSL. In all settings, EVOLVE achieves the
best performance and the final accuracy is of similar level
regardless of which SSL is used. Such observation supports

Figure 1. EVOLVE can achieve comparable or better accuracy compared with the experts with a much smaller model size. The kNN
accuracy during training by EVOLVE, compared to the kNN accuracy of the frozen experts. We select the best two SSL, SimCLR and
BYOL, as backbone and experiment under the iid streaming data.

the strong learning capability of EVOLVE in scenarios with
limited prior knowledge.

6. More Weight Updates Results
In Fig. 2, a comprehensive visualization across all

datasets featuring sequential streams is presented. For each
configuration, we depict the expert weights during train-
ing, contrasting the Multiplicative Weights (MW) update
method with the proposed moving average-based update
method in EVOLVE. The weight wt

e of each expert is up-
dated based on the current and historical confidence qte, but
using different mechanisms. A higher qte (and subsequently,
a higher wt

e) means that the expert is more confident about
the current input batch, implying a better quality of the ex-
pert in the current dataset.

It can be observed in Fig. 2 that different expert mod-
els have varied wt

e on different datasets, which supports
the motivation of EVOLVE which distills from a diverse set
of experts for richer information. CIFAR-10 and CORe50
display one expert’s consistent dominance during sequen-
tial training, whereas TinyImageNet and Stream-51 exhibit
alternating confidence between two experts with incoming
batches. In the latter case, MW cannot effectively cap-
ture this alternation due to accumulation. The proposed
EVOLVE is able to reflect the alternation by maintaining a
moving average of the past and latest confidence.

7. More Sensitivity Analysis
In Fig. 3, we present more sensitivity results of λ

and α on various datasets using different underlying SSL.
To remind the reader, we set λ based on the relative
loss scale, and experiment λ = ψ |LSSL|

|LE | with ψ ∈
{0.5, 0.75, 1.0, 1.25, 1.5}. We further evaluate EVOLVE us-
ing SimCLR on Seq-imb Stream-51 streams, and using
BYOL on Seq-imb CORe50 streams. We show the aver-
age and standard deviation of the final kNN accuracy in 3
random trials.

We highlight that our selection of hyperparameters α and
λ is based on a validation set, while the testing results in
a specific scenario is jointly affected by the dataset, the

Figure 2. The proposed EVOLVE can better capture the dynamics
of the data streams and the change of experts’ confidence by main-
taining a moving average of the past and latest confidence. Left
column: results of the MW algorithm in different settings. Right
column: results of the proposed moving average-based update.

streaming pattern, the quality of experts and the underly-
ing SSL. ψ = 1.5 achieves the best kNN accuracy in the
two testing scenarios in Fig. 3. We believe this can be at-
tributed to the challenging nature of the Seq-imb video data
streams, thus placing higher weight on LE will lead to a bet-
ter performance at the end of the single-pass continuum. In
terms of α, α = 0.97 produces the highest kNN accuracy on
Seq-imb Stream-51 streams with SimCLR, while α = 0.95

Table 2. Comparison of EVOLVE and unsupervised continual learning baselines on the Seq CIFAR-10 streams. Bold and underlined values
show the best and second best results on the basis of each SSL.

Method kNN Accuracy(↑) Linear Evaluation Accuracy(↑)
SimCLR BYOL SimSiam BarlowTwins VICReg SimCLR BYOL SimSiam BarlowTwins VICReg

SSL 46.3±0.4 38.5±1.1 38.0±0.9 36.7±5.8 40.4±0.9 38.8±1.2 35.3±1.0 33.7±1.7 31.3±8.4 42.9±0.3
SI 38.6±0.5 28.3±1.2 33.9±1.4 34.5±0.3 40.5±0.7 28.6±1.2 22.0±0.9 28.9±2.8 26.3±0.5 33.4±1.1

PNN 37.9±0.6 27.8±0.6 33.9±1.4 34.7±0.2 40.9±0.4 27.7±1.1 21.0±0.9 28.4±3.7 26.3±1.6 32.6±1.1
DER 39.5±0.7 28.5±0.6 32.1±2.1 35.6±0.5 40.7±0.6 39.0±0.2 26.7±1.1 24.7±1.0 35.3±1.2 42.0±0.0

CaSSLe 28.3±1.3 37.3±0.2 37.3±0.8 29.5±3.8 40.2±0.6 13.2±2.6 35.8±0.7 35.6±1.0 21.0±0.9 42.2±0.5
LUMP 38.1±0.6 34.2±1.3 34.4±0.7 24.9±0.6 42.8±1.2 31.7±0.9 28.4±1.3 27.9±0.4 17.0±1.3 43.1±1.1

EVOLVE 50.9±0.5 54.1±0.3 51.8±0.3 49.6±1.4 52.5±0.3 53.2±0.4 55.7±0.3 51.3±1.2 51.2±1.3 54.0±0.5

Table 3. Comparison of EVOLVE and unsupervised continual learning baselines on the Seq TinyImageNet streams. Bold and underlined
values show the best and second best results based on each SSL.

Method kNN Accuracy(↑) Linear Evaluation Accuracy(↑)
SimCLR BYOL SimSiam BarlowTwins VICReg SimCLR BYOL SimSiam BarlowTwins VICReg

SSL 15.3±0.2 11.2±0.0 10.1±0.2 7.9±0.4 14.5±0.4 11.0±0.3 6.8±0.5 4.5±0.5 3.5±0.4 16.6±0.2
SI 13.4±0.5 9.6±0.2 9.4±0.7 8.2±1.2 13.1±0.2 9.4±0.0 8.2±1.0 5.9±0.0 4.7±1.0 11.7±0.8

PNN 13.7±0.6 10.2±0.1 9.9±1.1 8.1±0.9 13.1±0.3 11.7±0.0 11.9±0.8 5.7±1.7 5.0±0.0 11.5±0.0
DER 13.4±0.3 8.9±0.3 9.7±0.6 8.0±0.5 12.9±0.2 12.6±0.0 12.7±1.0 6.1±0.0 4.4±0.0 12.6±0.0

CaSSLe 8.6±0.2 10.8±0.2 10.6±0.2 7.2±0.5 14.8±0.5 3.2±0.9 8.2±2.5 5.0±0.3 1.9±0.3 16.6±0.1
LUMP 13.1±0.3 8.9±0.2 9.1±0.6 7.0±0.2 14.5±0.2 11.3±0.7 12.5±0.3 8.2±0.8 6.1±0.9 15.9±0.7

EVOLVE 18.6±0.8 20.2±0.5 18.3±0.2 12.7±2.9 19.8±0.6 18.7±3.6 16.1±0.7 19.6±0.6 11.3±5.2 24.5±0.4

Figure 3. More sensitivity experiments of various hyperparameters
in EVOLVE.

achieves the best result on Seq-imb CORe50 streams with
BYOL.

8. Time Complexity Analysis
EVOLVE is efficient during both inference and training.

During inference, all experts are discarded, and only the
continual learner is used for inference. For training, we im-
prove efficiency by reusing computation, and the time com-
plexity of EVOLVE is analyzed below.

As explained in the main paper, EVOLVE has two loss
terms: the self-supervised learning loss LSSL and the ex-
pert aggregation loss LE . The time complexity of the SSL
side is determined by the SSL method. One major novelty
of EVOLVE lies in the expert aggregation loss, which takes
the following steps to compute:

(1) Given the stacked augmented samples xt, EVOLVE

first passes the samples into all expert models and the
continual learner.

(2) For each expert model e that generates the represen-
tations he, EVOLVE computes the kernel matricx Kt

e.
Lt is the kernel matrix computed on the local client by
the continual learner, and shared with the cloud.

(3) EVOLVE computes the HSIC score for each expert
model as well as the continual learner and obtains
HSIC(Kt

e,L
t
e), HSIC(Kt,Lt). To remind the read-

ers, HSIC(K,L) = 1
(n−1)2 Tr(KHLH), where H =

I− 1
n11

T is the centering matrix.

(4) Last but not least, EVOLVE computes the dynamic
weight pte associated with each expert based on the
confidence metric qte. Now LE can be calculated as
Eq.(2) in the main paper.

We focus on steps (2), (3), (4) in our complexity analysis
for EVOLVE.

For simplicity, in the following analysis, we use n =
b+bM to denote the batch size of the combined data stream
and memory samples. In step (2), the kernel matrix is com-
puted as the pairwise dot product between he and h⊤

e , thus
the complexity is O(n2). In step (3), it takesO(n2) to com-
pute KH and LH respectively, and the trace operation is
O(n). For step (4), Eq.(3) in the main paper lists the compu-
tation of qte. Note that hA

e,i ·hA
e,k in the nominator is exactly

Kt
e,ik, which has already been computed in step (2). The

time complexity of qte isO(n2) which is driven by hA
e,i·hB

e,k.
In summary, computing LE in EVOLVE consumes O(En2)
time given E pretrained experts. As E << n in most cases,

Table 4. Comparison of EVOLVE and unsupervised continual learning baselines on the Seq CORe50 streams. Bold and underlined values
show the best and second best results based on each SSL.

Method kNN Accuracy(↑) Linear Evaluation Accuracy(↑)
SimCLR BYOL SimSiam BarlowTwins VICReg SimCLR BYOL SimSiam BarlowTwins VICReg

SSL 23.5±0.8 25.8±0.4 20.2±0.9 31.3±0.0 23.4±0.8 13.3±1.4 14.4±1.7 9.7±1.8 26.4±1.2 18.0±0.9
SI 15.5±1.9 19.0±1.1 19.4±2.3 14.3±1.0 25.5±1.1 8.9±0.8 14.7±4.0 6.3±0.5 12.6±1.7 9.8±0.9

PNN 15.6±0.9 19.9±1.9 15.7±0.4 14.1±1.1 25.2±1.4 8.6±1.4 14.9±5.0 8.7±3.3 7.1±0.1 9.5±0.6
DER 21.3±1.6 22.8±0.7 21.1±1.8 16.2±1.1 25.6±0.7 14.1±1.4 14.7±2.4 12.5±3.1 12.5±3.1 9.9±1.3

CaSSLe 12.6±2.0 26.0±0.7 20.9±1.3 19.8±1.2 24.1±0.8 4.6±1.6 17.3±0.7 9.4±2.6 6.9±1.1 18.2±1.4
LUMP 27.3±0.9 15.5±1.2 17.4±0.8 29.8±0.5 21.0±0.5 18.8±1.4 9.8±2.0 4.1±0.3 7.8±1.2 28.4±0.4

EVOLVE 44.1±1.4 43.6±1.3 45.2±0.2 43.7±2.0 40.3±0.9 53.0±1.4 57.3±0.5 54.9±0.3 46.8±4.6 39.4±1.1

Table 5. Comparison of EVOLVE and unsupervised continual learning baselines on the Seq-imb CIFAR-10 streams. Bold and underlined
values show the best and second best results on the basis of each SSL.

Method kNN Accuracy(↑) Linear Evaluation Accuracy(↑)
SimCLR BYOL SimSiam BarlowTwins VICReg SimCLR BYOL SimSiam BarlowTwins VICReg

SSL 13.3±0.4 17.2±1.8 12.2±0.2 18.0±0.9 14.8±0.7 36.8±0.3 31.7±1.3 31.9±2.8 28.8±7.1 43.6±0.1
SI 38.0±0.6 29.3±1.1 34.1±0.8 32.5±0.3 39.8±0.9 28.2±0.5 22.6±2.2 29.2±0.7 24.5±1.3 31.9±1.0

PNN 38.1±0.7 28.2±0.4 33.5±1.7 33.4±0.8 40.2±0.8 27.7±1.1 21.0±0.9 28.4±3.7 26.3±1.6 32.6±1.1
DER 38.9±0.8 29.4±1.1 32.2±0.8 34.5±0.3 38.6±0.5 39.0±0.2 26.7±1.1 24.7±1.0 35.3±1.2 42.0±0.0

CaSSLe 30.7±2.5 37.2±0.8 35.9±0.2 30.4±3.3 41.6±0.4 12.9±1.7 36.6±2.2 33.2±1.7 25.5±7.2 43.3±0.6
LUMP 36.2±0.8 32.5±0.7 33.3±1.0 26.8±0.9 41.0±1.4 31.7±0.9 28.4±1.3 27.9±0.4 17.0±1.3 43.1±1.1

EVOLVE 50.8±0.1 52.9±0.9 50.2±0.6 49.0±1.2 51.9±0.2 52.4±0.9 53.8±0.9 47.9±1.5 51.2±0.9 53.0±0.5

we conclude that EVOLVE takes quadratic time as a function
of the batch size n.

We emphasize that the O(n2) complexity to compute
LE is comparable with LSSL for certain SSL methods.
For BYOL and SimSiam, since they both employ MSE-
based losses between the two views, it takes O(n) to com-
pute. Nevertheless, the time complexity for SimCLR, Bar-
lowTwins and VICReg are O(n2): SimCLR computes the
cosine similarity between all representations; BarlowTwins
calculates the cross-correlation matrix; VICReg adds the
MSE and variance losses on top of the co-variance loss from
the cross-correlation matrix.

References
[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multi-

plicative weights update method: a meta-algorithm and ap-
plications. Theory of computing, 8(1):121–164, 2012. 1

[2] Adrien Bardes, Jean Ponce, and Yann LeCun. Vi-
creg: Variance-invariance-covariance regularization for self-
supervised learning. arXiv preprint arXiv:2105.04906, 2021.
2

[3] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for gen-
eral continual learning: a strong, simple baseline. Advances
in neural information processing systems, 33:15920–15930,
2020. 2

[4] Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P
Helmbold, Robert E Schapire, and Manfred K Warmuth.
How to use expert advice. Journal of the ACM (JACM),
44(3):427–485, 1997. 1

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning

of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 2

[6] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15750–15758, 2021. 2

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 3

[8] Enrico Fini, Victor G Turrisi da Costa, Xavier Alameda-
Pineda, Elisa Ricci, Karteek Alahari, and Julien Mairal. Self-
supervised models are continual learners. arXiv preprint
arXiv:2112.04215, 2021. 2

[9] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in Neural Information
Processing Systems, 33:21271–21284, 2020. 2

[10] V Lomanco and Davide Maltoni. Core50: a new dataset and
benchmark for continual object recognition. In Proceedings
of the 1st Annual Conference on Robot Learning, pages 17–
26, 2017. 3

[11] Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu,
and Sung Ju Hwang. Representational continuity for unsu-
pervised continual learning. In International Conference on
Learning Representations, 2022. 1, 2

[12] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011. 3

[13] Jason Ramapuram, Magda Gregorova, and Alexandros
Kalousis. Lifelong generative modeling. Neurocomputing,
404:381–400, 2020. 3

[14] Dushyant Rao, Francesco Visin, Andrei A Rusu, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Continual
unsupervised representation learning. arXiv preprint
arXiv:1910.14481, 2019. 3

[15] Ryne Roady, Tyler L. Hayes, Hitesh Vaidya, and Christo-
pher Kanan. Stream-51: Streaming classification and nov-
elty detection from videos. In The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Work-
shops, June 2020. 3

[16] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 2

[17] James Smith, Cameron Taylor, Seth Baer, and Constan-
tine Dovrolis. Unsupervised progressive learning and the
stam architecture. In Zhi-Hua Zhou, editor, Proceedings of
the Thirtieth International Joint Conference on Artificial In-
telligence, IJCAI-21, pages 2979–2987. International Joint
Conferences on Artificial Intelligence Organization, 8 2021.
Main Track. 2

[18] Fei Ye and Adrian G Bors. Learning latent representa-
tions across multiple data domains using lifelong vaegan. In
European Conference on Computer Vision, pages 777–795.
Springer, 2020. 3

[19] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and
Stéphane Deny. Barlow twins: Self-supervised learning via
redundancy reduction. In International Conference on Ma-
chine Learning, pages 12310–12320. PMLR, 2021. 2

[20] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In International
Conference on Machine Learning, pages 3987–3995. PMLR,
2017. 2

