
FAKD: Feature Augmented Knowledge Distillation for Semantic Segmentation

Jianlong Yuan1,2*† Minh Hieu Phan3* Liyang Liu3 Yifan Liu3

1Damo Academy, Alibaba Group 2Hupan Lab 3University of Adelaide

Discussion on the trade-off between training time and
model’s efficiency. We measured training time and infer-
ence speed (in seconds) on a V100 GPU. We used PSPNet-
R101 as the teacher and PSPNet-R18 as the student, with a
batch size of 4. The training (trn.) time for each iteration
and inference (inf.) speed are shown in Tab. 1. Compared
to CIRKD, our FAKD has a faster training time. Compared
to CWD, our FAKD needs to compute covariance matrix,
incurring extra training computing overhead. This com-
putational aspect represents a limitation of our approach.
However, it is essential to highlight that our method intro-
duces no additional model parameters. After training, the
student network still has the same real-time inference speed
(0.089 seconds), while achieving a remarkable 4.38% in-
crease in mIoU. In critical tasks such as edge computing
for autonomous driving, our model still ensures high accu-
racy with real-time inference, justifying the extended train-
ing time in precision-demanding applications.

Table 1. Training time (in seconds) and other metrics for PSPNet-
R101 (teacher) and PSPNet-R18 (student) with a batch size of 4
on a Nvidia V100 GPU.

Methods Trn. time(s) Inf. time (s) mIoU
SKDS 0.348 0.089 29.42
IFVD 0.461 0.089 32.15
CIRKD 0.537 0.089 32.25
CWD 0.348 0.089 33.82
Ours 0.505 0.089 35.30

Derivation of the surrogate loss for implicit feature aug-
mentation. This section derives the upper-bound of the loss
objectives for implicit infinite data augmentations, which is
Proposition 1 in Section 3:

Proposition 1. Suppose that S̃i ∼ N (si, λiΣi), we have

*Equal contribution
†Corresponding Author

Laug ≤ τ2

C

M∑
i=1

C∑
c=1

OT
i,c

log
{ M∑
k=1

exp
[w⊤

c (Si − Sk)

τ
+

w⊤
c (λcΣi + λkΣk)wc

2τ

]}
.

(1)

Remind that

LCWD
aug = − τ2

M

M∑
i=1

C∑
c=1

ES̃i

[
OT

i,c log

M∑
k=1

exp
w⊤

c (S̃i − S̃k)

τ

]
.

(2)
According to Jensen’s Inequality, the loss in Eq. 2 has an
upper bound be as follows

Laug ≤ τ2

C

M∑
i=1

C∑
c=1

OT
i,c log

[
ES̃i

[
M∑
k=1

exp
w⊤

c (S̃i − S̃k)

τ

]]
.

(3)

Following existing work [1, 2], we apply Gaussian dis-
tribution to approximate the distribution for deep features.
Specifically, we assume that Ŝi ∼ N (Si, λiΣi), where Σi

are the covariance of the semantic distribution of the i-th
example. The next section discusses how to estimate this
covariance matrix Σi. With the assumption about distribu-
tion of Ŝi, Ŝi − Ŝk also follows the Gaussian distribution:

w⊤
c (S̃i − S̃k)

τ
∼

N
(
w⊤

c (Si − Sk)

τ
,
w⊤

c (λiΣi + λkΣk)wc

τ

)
. (4)

For a variable x that follows Gaussian distribution
N (µ,Σ), the moment-generating function shows that
E[exp (a⊤x)] = exp (a⊤µ+ 1

2a
⊤Σa). Therefore, by tak-

ing the statistics for each example, the upper-bound in Eq. 3

1



can be simplified as

LPD
aug ≤ 1

M

M∑
i=1

C∑
c=1

OT
i,c

log

{
C∑

k=1

exp
[
∆wkSi + bk − bc +

λ

2
∆wkΣc∆wk

]}
,

(5)

where ∆wk = w⊤
k − w⊤

c . Eq. 5 is our final feature-
augmentation loss for pixel-wise distillation.
Covariance estimation. Following [3], instead of random
sampling, we approximate the human-annotated procedure
by drawing random vectors from a zero-mean normal distri-
bution with the covariance proportional to the intra-class co-
variance matrix of the pixel-wise sample to be augmented.
The covariance matrix is a mode of the category condi-
tional distribution that captures rich semantic knowledge
as it encodes category-specific variation. We generate aug-
mented students corresponding to si along the class modes.
yi ∈ {1, ..., C} is the label of the i-th pixel sample xi over
C classes. First, we setup a zero-mean multi-variate nor-
mal distribution N(0,Σyi

), where Σyi
is the category con-

ditional covariance matrix estimated from the deep features
of all samples in yi. We compute the matrices online by tak-
ing into account the statics of all mini-batches. Formally,
the online estimation algorithm for the covariance matrices
is given by:

µ
(t)
j =

n
(t−1)
j µ

(t−1)
j +m

(t)
j µ′(t)

j

n
(t−1)
j +m

(t)
j

(6)

Σ
(t)
j =

n
(t−1)
j Σ

(t−1)
j +m

(t)
j Σ′(t)

j

n
(t−1)
j +m

(t)
j

+
n
(t−1)
j m

(t)
j (µ

(t−1)
j − µ′(t)

j )(µ
(t−1)
j − µ′(t)

j )T

(n
(t−1)
j +m

(t)
j )2

, (7)

n
(t)
j = n

(t−1)
j +m

(t)
j (8)

where µ
(t)
j and Σ

(t)
j are the estimates of average values

and covariance matrices of the features of jth class at tth

step. µ′(t)
j and Σ′(t)

j are the average values and covariance

matrices of the features of jth class in tth mini-batch. n(t)
j

denotes the total number of training samples belonging to
jth class in all t mini-batches, and m

(t)
j denotes the number

of training samples belonging to jth class only in tth mini-
batch.
Discussion. While ISDA [4] computes the covariance ma-
trix from image-wise samples, which requires a large batch

size to sufficiently capture the covariance matrix, our FAKD
updates covariance matrix from pixel-wise samples. A sin-
gle image contains sufficiently large number of samples
(e.g., 512 × 512 ≈ 200K pixel-level samples). Hence, a
small batch size of 16 is sufficient to capture the meaning-
ful covariance matrix.
Pesudo-Code for FAKD. Figure 5 shows the pytorch-based
pseudo-code of FAKD. Figure 6 illustrates how to calculate
Σ.
Ablation study of infinite teachers/students. Follow-
ing ℓCWD

aug , we could replace infinite students with infinite
teachers. We define a student as consistent with all of the
teachers. As shown in Table 2, both methods could get im-
provement. Furthermore, infinite students have 0.07% im-
provement compared with infinite teachers.

Table 2. Experiment for infinite teachers/students. Based on
ℓCWD
aug , an infinite number of teachers and students are introduced

in parts.

Formula mIoU mAcc(%)
Infinite teachers 35.23 44.51
Infinite students 35.30 44.06

Table 3. Experiment with data augmentation. Compared with oth-
ers, our method gets better performance.

equation mIoU mAcc(%)
CE 29.42 38.48
CE+CWD 33.82 42.41
CE+CWD+ISDA 34.67 43.46
CE+FAKD 35.30 44.06

Ablation study with data augmentation. As shown in Ta-
ble 3, we also compared with ISDA [3,4] which is a method
of data augmentation in supervised learning. We can see
that FAKD could improve 0.63% compared with ISDA. So,
introducing infinite samples in distillation has better perfor-
mance.

References
[1] Yarin Gal and Zoubin Ghahramani. Bayesian convolutional

neural networks with bernoulli approximate variational infer-
ence. arXiv preprint arXiv:1506.02158, 2015. 1

[2] Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? Proc. Adv.
Neural Inform. Process. Syst., 30, 2017. 1

[3] Yulin Wang, Gao Huang, Shiji Song, Xuran Pan, Yitong Xia,
and Cheng Wu. Regularizing deep networks with semantic
data augmentation. IEEE TPAMI, 2021. 2



(a) Image (b) GT (c) Student (d) CWD (e) Ours

Figure 1. Qualitative segmentation results on the validation set of
ADE20K using the PSPNet-ResNet18 network: (a) raw images,
(b) ground truth, (c) student, (d) channel wise distillation, (e) our
method FAKD.

(a) Image (b) GT (c) Student (d) CWD (e) Ours

Figure 2. Qualitative segmentation results on the validation set
of Pascal Context using the PSPNet-ResNet18 network: (a) raw
images, (b) ground truth, (c) student, (d) channel wise distillation,
(e) our method FAKD.

[4] Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Gao Huang,
and Cheng Wu. Implicit semantic data augmentation for

deep networks. Proc. Adv. Neural Inform. Process. Syst.,
32:12635–12644, 2019. 2



(a) Image (b) GT (c) Student (d) CWD (e) Ours

Figure 3. Qualitative segmentation results on the validation set of Cityscapes using the PSPNet-ResNet18 network: (a) raw images, (b)
ground truth, (c) student, (d) channel wise distillation, (e) our method FAKD.

(a) Image (b) GT (c) Student (d) CWD (e) Ours

Figure 4. Qualitative segmentation results on the validation set of
Pascal Voc using the PSPNet-ResNet18 network: (a) raw images,
(b) ground truth, (c) student, (d) channel wise distillation, (e) our
method FAKD.



def FAKD(teacher preds, student preds, student features, conv, gt, estimator, ratio):
'''

teacher preds and student preds are logits from the teacher and the student
student features is features from the studnet
conv is classification layer
tau is temprature

'''
N, C, W, H = student preds.shape
student features = semantic aug(student preds, student features, conv, gt, estimator, ratio)
teacher preds softmax = F.softmax(teacher preds.reshape(−1, W ∗ H) / tau, dim=1)
student preds logsoftmax = F.log softmax(student features.reshape(−1, W ∗ H) / tau, dim=1)
loss = torch.sum(− teacher preds softmax ∗ student preds logsoftmax) ∗ (tau ∗∗ 2)
return loss weight ∗ loss / (C ∗ N)

def semantic aug(preds, features, conv, gt, estimator, ratio):
'''

N, A, H, W is the shape of features
C is number classes

'''
gt = F.interpolate(gt, size=(H, W)).reshape(−1)
features = features.permute(0, 2, 3, 1).reshape(−1, A)
preds = preds.permute(0, 2, 3, 1).reshape(−1, C)
with torch.no grad():

estimator(features, gt)
sv = semantic vector(conv, features, preds, gt, CoVariance, ratio).reshape(N, H, W, C).permute(0, 3, 1, 2)
return sv

def semantic vector(conv, features, preds, gt, CoVariance, ratio):
gt mask = gt == ignore label
labels = (1 − gt mask).mul(gt)
N, A, C = features.size(0), features.size(1), preds.shape[1]
weight m = list(conv.parameters())[0].squeeze()
CV temp = CoVariance[labels]
sigma2 = ratio ∗ weight m.pow(2).mul(CV temp.reshape(N, 1, A).expand(N, C, A)).sum(2)
aug result = preds + 0.5 ∗ sigma2.mul((1 − gt mask).reshape(N, 1).expand(N, C))
return aug result

Figure 5. Python code for FAKD based upon pytorch.

def estimator(features, labels):
'''

C is class number
CoVariance, Mean, Amount are the statistical values

'''
N, A = features.size()
NxCxA Features = features.view(N, 1, A).expand(N, C, A)
onehot = torch.zeros(N, C)
onehot.scatter (1, labels.view(−1, 1), 1)
NxCxA onehot = onehot.view(N, C, 1).expand(N, C, A)
features by sort = NxCxA Features.mul(NxCxA onehot)
Amount CxA = NxCxA onehot.sum(0)
Amount CxA[Amount CxA == 0] = 1
mean CxA = features by sort.sum(0) / Amount CxA
var temp = features by sort − mean CxA.expand(N, C, A).mul(NxCxA onehot)
var temp = var temp.pow(2).sum(0).div(Amount CxA)
sum weight CV = onehot.sum(0).view(C, 1).expand(C, A)
weight CV = sum weight CV.div(sum weight CV + self.Amount.view(C, 1).expand(C, A))
weight CV[weight CV != weight CV] = 0
additional CV = weight CV.mul(1 − weight CV).mul((Mean − mean CxA).pow(2))
CoVariance = (CoVariance.mul(1 − weight CV) + var temp.mul(weight CV)) + additional CV
Mean = (Mean.mul(1 − weight CV) + mean CxA.mul(weight CV))
Amount = Amount + onehot.sum(0)

Figure 6. Python code for calculating Σ based upon pytorch.


