
Supplementary

A. Derivation of Gradient in Eq. 8
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B. Comparison with Different ViTs
In Figure 4, we demonstrate that temperature τ has a

consistent impact on various ViT models when equipped
with general contrastive loss and hyperbolic contrastive
loss. Specifically, we evaluate ViT-s, DINO, and DeiT-s.
Across different backbone transformer settings, hyperbolic
embeddings consistently outperform Euclidean embeddings
when τ > 0.2. For DINO hyperbolic embeddings show
similar performance when τ = 0.2 and τ = 0.3. When
τ increases, the performance of both Euclidean and hyper-
bolic embeddings drops. However, hyperbolic embeddings
are always superior to the Euclidean case.

Figure 4. Recall of 1K metric comparison of models trained with different temperatures τ using CUB-200-2011 dataset. The x-axis
indicates different τ . “Sph-” are versions with hypersphere embeddings optimized using Dcos, “Hyp-” are versions with hyperbolic
embeddings optimized using Dhyp. “ViT”, “DINO”, “DeiT” indicates the pretraining for the vision transformer encoders. For “Hyp-” we
fix the curvature parameter c = 0.1


