Supplementary

A. Derivation of Gradient in Eq. 8
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B. Comparison with Different ViTs

In Figure 4, we demonstrate that temperature 7 has a
consistent impact on various ViT models when equipped
with general contrastive loss and hyperbolic contrastive
loss. Specifically, we evaluate ViT-s, DINO, and DeiT-s.
Across different backbone transformer settings, hyperbolic
embeddings consistently outperform Euclidean embeddings
when 7 > 0.2. For DINO hyperbolic embeddings show
similar performance when 7 = 0.2 and 7 = 0.3. When
T increases, the performance of both Euclidean and hyper-
bolic embeddings drops. However, hyperbolic embeddings
are always superior to the Euclidean case.
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Figure 4. Recall of 1K metric comparison of models trained with different temperatures 7 using CUB-200-2011 dataset. The x-axis

indicates different 7. “Sph-" are versions with hypersphere embeddings optimized using D.os, “Hyp-’

s

are versions with hyperbolic

embeddings optimized using Djyp. “ViT”, “DINO”, “DeiT” indicates the pretraining for the vision transformer encoders. For “Hyp-" we

fix the curvature parameter ¢ = 0.1



