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In this supplementary material, we provide additional ex-

perimental details, as well as quantitative and qualitative re-

sults of our proposed method.

1. Additional Experimental Details

Network details. The ODM3D cross-modal distilla-

tion framework consists of a SECOND [21] teacher and

a CaDDN [19] student. The SECOND network vox-

elises point clouds L within the range of [xmin =
2m, ymin = −30.08m, zmin = −3m, xmax =
46.8m, ymax = 30.08m, zmax = 1m] with a resolu-

tion of [0, 04m, 0.04m, 0.1m]. It produces an intermediate

bird’s-eye view (BEV) feature map F
Tea

BEV
∈ R

140×188×128.

CaDDN takes as input RGB images I ∈ R
WRGB×HRGB×3.

It employs ResNet-101 [3] and DeepLabV3 [1] for its RGB

feature extraction backbone and categorical depth estima-

tion backbone, respectively. CaDDN produces an inter-

mediate BEV feature map F
Stu

BEV
∈ R

140×188×128, whose

shape aligns with F
Tea

BEV
. Following [4], we stack five cali-

bration blocks from [13] to refine these BEV features. The

occupancy mask is a 2D mask that has the same width and

height as FTea

BEV
and F

Stu

BEV
.

Training details. First, to prepare the pre-trained LiDAR-

based teacher, we follow the same settings as in [4] and train

a SECOND [21] detector for 80 epochs on labelled data

using the quality focal loss (QFL) [8]. Next, we train our

cross-modal distillation framework using the Adam [6] op-

timiser with weight decay and a one-cycle learning rate pol-

icy. Cross-modal distillation is trained using both labelled

and unlabelled data and in two stages. Specifically, we train

the framework with only feature distillation in stage 1 for 30

epochs and with both feature and response distillations in

stage 2 for 15 epochs. This strategy is intended to ease the

multi-task learning of both types of distillations, by train-

ing the student to first produce BEV features of adequate

quality. CMAug is applied in both stages. A total of 15
ªCarº, 10 ªPedestrianº, and 10 ªCyclistº objects are sam-

pled for each scene and filtered with an IoU-based BEV

collision threshold of 0.5, an OAIS-based perspective-view

Method Venue
Val APBEV @IoU=0.7

Easy Mod. Hard

MonoDTR [5] CVPR’22 33.33 25.35 21.68

DEVIANT [7] ECCV’22 32.60 23.04 19.99

GUPNet [14] ICCV’21 31.07 22.94 19.75

MonoDETR [23] ICCV’23 37.86 26.95 22.80

MonoDistill [2] ICLR’22 33.09 25.40 22.16

DID-M3D [18] ECCV’22 31.10 22.76 19.50

MonoDDE [10] CVPR’22 35.51 26.48 23.07

ADD [20] AAAI’23 40.38 29.07 25.05

MonoATT [25] CVPR’23 38.93 29.76 25.73

Mix-Teaching* [22] CSVT’23 37.45 28.99 25.31

ODM3D* (Ours) - 41.24 30.53 25.70

Improvements - +0.86 +0.77 -0.03

Table 1. APBEV |R40
results of ªCarº objects on KITTI val. *

denotes semi-supervised methods. ªImprovementsº indicates ab-

solute AP improvements compared to the highest results reported

by previous methods (underlined). Best results within each sub-

category are marked in bold.

(PV) collision threshold of 0.5, and a PV size threshold of

600, before pasted into the scene. Ground plane data are

not utilised when pasting objects. Besides, we also apply

random scene-level horizontal flipping to both images and

point clouds. During inference, we apply non-maximum

suppression (NMS) with an IoU threshold of 0.01, before

filtering predicted boxes with a score threshold of 0.2. Test-

time augmentation (TTA) is not applied.

2. Additional Quantitative Results

KITTI Val APBEV results. We provide APBEV re-

sults on KITTI val in Tab. 1. As can be seen, on ªEasyº

and the most important ªModerateº difficulty levels, our

method consistently outperforms CMKD [4] and all previ-

ous methods. Our method also achieves competitive results

on ªHardº objects, second only to MonoATT [25] with a

very small margin.
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Method Venue Extra Data
Ped. AP3D@IoU=0.5 Cyc. AP3D@IoU=0.5

Easy Mod. Hard Easy Mod. Hard

MonoFlex [24] CVPR’21 - 9.43 6.31 5.26 4.17 2.35 2.04

MonoDDE [10] CVPR’22 - 11.13 7.32 6.67 5.94 3.78 3.33

MonoJSG [12] CVPR’22 - 11.02 7.49 6.41 5.45 3.21 2.57

MonoDETR [23] ICCV’23 - 12.54 7.89 6.65 7.33 4.18 2.92

CaDDN [19] CVPR’21 LiDAR 12.87 8.14 6.76 7.00 3.41 3.30

MonoDistill [2] ICLR’22 LiDAR 12.79 8.17 7.45 5.53 2.81 2.40

DEVIANT [7] ECCV’22 - 13.43 8.65 7.69 5.05 3.13 2.59

DD3D [15] ICCV’21 Depth 13.91 9.30 8.05 2.39 1.52 1.31

GUPNet [14] ICCV’21 - 14.95 9.76 8.41 5.58 3.21 2.66

MonoDTR [5] CVPR’22 LiDAR 15.33 10.18 8.61 5.05 3.27 3.19

DD3Dv2 [16] ICRA’23 LiDAR 16.25 10.82 9.24 8.79 5.68 4.75

LPCG* [17] ECCV’22 LiDAR 7.21 5.53 4.46 4.83 2.65 2.62

3DSeMo* [11] arXiv’23 LiDAR 10.78 7.26 6.05 7.04 4.24 3.56

Mix-Teaching* [22] CSVT’23 LiDAR 11.67 7.47 6.61 8.04 4.91 4.15

CMKD* [4] ECCV’22 LiDAR 13.94 8.79 7.42 12.52 6.67 6.34

ODM3D* (Ours) - LiDAR 15.28 8.98 7.80 13.73 6.54 6.21

Improvements - - +1.34 +0.19 +0.42 +1.21 -0.12 -0.13

Table 2. AP3D|R40
results of ªPedestrianº and ªCyclistº objects on KITTI test. * denotes semi-supervised methods. ªImprovementsº

indicates absolute AP improvements compared to a CMKD baseline. Best results within each sub-category are marked in bold.

Method
Test AP3D@IoU=0.7

Easy Mod. Hard

MonoFlex [24] 19.94 13.89 12.07

MonoFlex+3DSeMo [11] 23.55 15.25 13.24

Improvements +18.1% +9.8% +9.7%

MonoFlex [24] 19.94 13.89 12.07

MonoFlex+LPCG [17] 25.56 17.80 15.38

Improvements +28.2% +28.1% +27.4%

MonoFlex [24] 19.94 13.89 12.07

MonoFlex+Mix-Teaching [22] 26.89 18.54 15.79

Improvements +34.9% +33.5% +30.8%

CaDDN [19] 19.17 13.41 11.46

CaDDN+CMKD [4] 28.55 18.69 16.77

Improvements +48.9% +39.4% +46.3%

CaDDN [19] 19.17 13.41 11.46

CaDDN+ODM3D (Ours) 29.75 19.09 16.93

Improvements +55.2% +42.4% +47.7%

Table 3. Relative improvements of semi-supervised methods over

base detectors for ªCarº objects on KITTI test.

KITTI test “Pedestrian” and “Cyclist” results. ªPedes-

trianº and ªCyclistº objects in the KITTI dataset suffer

from smaller sizes (in terms of numbers of pixels and Li-

DAR points), non-rigid appearance, and a significantly lim-

ited and unbalanced number of samples (2,207 ªPedestri-

ansº and 734 ªCyclistsº compared to 14,357 ªCarsº in the

KITTI 3D training set), leading to large fluctuations in re-

sults. For these reasons, some methods do not report results

on these two categories. In Tab. 2, we present results on

these two categories of our method along with other meth-

ods for which these results are available.

Relative improvements. Tab. 3 computes the relative im-

provements of semi-supervised M3OD methods over their

respective supervised base detectors. As can be seen, our

method yields the largest performance improvements across

ªCarº objects of all difficulties by dint of effective utilisa-

tion of unlabelled training samples and point cloud data.

3. Additional Qualitative Results

Detection visualisation. In Fig. 1, we showcase detections

by our method compared to a CaDDN [19] base detector,

CMKD [4], and the ground-truth annotations. It can be

seen that our method more accurately detects objects,

especially challenging ones (e.g. objects with a smaller

apparent size, occluded, or in shadows).

CMAug visualisation. In Fig. 2, we provide more ex-

amples of point cloud and image scenes augmented by

our CMAug strategy and MixedAug [9]. It is clear that

MixedAug produces augmented scenes with objects that are

extremely challenging (i.e. severely occluded) or even im-

possible (i.e. fully occluded) to learn, while our method suc-

cessfully mitigates such issues.



Figure 1. Qualitative comparison of detection results by CaDDN, CMKD, and our method.



Figure 2. Visualisation of training scenes augmented by MixedAug [9] (left) and our CMAug (right). Pasted objects and original objects

are marked with brown and lime green boxes, respectively; pasted points in LiDAR are coloured in orange.
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