Supplementary Materials for
“Contextual Affinity Distillation for Image Anomaly Detection”

A. Structural and Logical Anomaly Localization Results on MVTec LOCO

We separately report the structural and logical anomaly localization performance of evaluated methods on the LOCO [1]
dataset in Table 7. US [3] and GCAD [ 1] perform best on structural anomaly detection and logical anomaly detection, respec-
tively. Both of them show a bias towards one kind of anomaly. In contrast, our proposed method shows good performance
on both structural and logical anomaly detection, leading to the best overall performance at 0.730.

Table 7. Structural and logical anomaly localization results. The best scores are in bold and the second-best scores are with underlines.

Method Structural anomalies Logical anomalies Mean
AE 0.296 0.460 0.378
VAE 0.305 0.459 0.382
MNAD [9] 0.412 0.266 0.339
VM 0.124 0.325 0.225
f-AnoGAN [11] 0.209 0.460 0.334
SPADE [4] 0.368 0.536 0.451
US [3] 0.756 0.497 0.626
RD [5] 0.739 0.474 0.607
PatchCore-25 [10] 0.705 0.541 0.623
GCAD [1] 0.692 0.711 0.701
DSKD 0.754 0.707 0.730

B. AU sPRO Scores with Different Integration Limits

Table 8 shows the structural and logical anomaly localization performance of the evaluated methods with different in-
tegration limits. For all methods, the AU sPRO scores show higher with larger integration limits. Our proposed method
outperforms all the other methods with any integration limits.

C. Architecture of Global Context Condensing Block (GCCB)

The architecture of GCCB is shown in Table 9. Following the design philosophy of bottleneck block for ResNets [0],
we use conv 1 x 1 layers for reducing and increasing channel dimensions to reduce the model complexity. Without using
BatchNorm (BN) layers [7], we enable biases that act similar to them for convolution layers as modern CNN [8] architectures
do. We experimentally found that using biases instead of the BN layers performs better. The output sizes are computed under
the default setting where a pre-trained WideResNet50 [12] is used as the teacher 7', and the images are resized to 256 x 256.

D. More Visualization Results on MVtec LOCO

We visualize more detection results for each of the five categories for positive samples and negative samples. Figures 7
to 11 show the logical anomaly detection results for each category. Figures 12 to 16 show the structural anomaly detection
results. We visualize positive samples on the left and negative samples on the right. Note that the local student is identical to
the RD [5] method.



E. More Visualization Results on modified MVtec AD

We also visualize more logical anomaly samples from the modified MVTec AD [2] in Fig. 17. Note that MVTec AD [2]
has 15 categories, while only 3 out of them contain logical anomaly test images. We show logical anomaly images from the
cable, capsule, and transistor categories. It should also be noted that MVTec AD [2] has 1,258 anomalous test images but
only 37 of them are defined as logical anomaly samples, making it an unbalanced dataset for structural and logical anomaly
detection.

Table 8. The AU sPRO scores for different integration limits L.

Method L=001 L=005 L=01 L=03 L=1.0
AE 0.166 0.378 0.499 0.699 0.882
VAE 0.162 0.382 0.506 0.705 0.884
MNAD [9] 0.176 0.339 0.447 0.643 0.853
VM 0.086 0.225 0.314 0.493 0.740
f-AnoGAN [11] 0.152 0.334 0.442 0.624 0.827
SPADE [4] 0.225 0.451 0.587 0.790 0.927
US [3] 0.402 0.626 0.717 0.836 0.937
RD [5] 0.410 0.607 0.695 0.830 0.943
PatchCore-25 [10] 0.395 0.623 0.724 0.872 0.960
GCAD [1] 0.462 0.701 0.787 0.891 0.962
DSKD 0.513 0.730 0.809 0.910 0.970
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Figure 7. Logical anomaly samples for the Breakfast Box



Table 9. Architecture of GCCB.

Layer Output Size  Kernel
Input 8 x 8 x 2048
Convl 8x8x1024 1x1
RelLU 8 x 8 x 1024
Conv2 1x1x1024 8x8
RelLU 1x1x1024
De_convl 8 x8x 1024 8x8
RelLU 8 x 8 x 1024

Conv3 8x8x2048 1x1
ReLU 8 X 8 x 2048
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Figure 8. Logical anomaly samples for the Screw Bag
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Figure 9. Logical anomaly samples for the Pushpins
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Figure 10. Logical anomaly samples for the Splicing Connectors
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Figure 11. Logical anomaly samples for the Juice Bottle
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Figure 12. Structural anomaly samples for the Breakfast Box
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Figure 13. Structural anomaly samples for the Screw Bag
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Figure 14. Structural anomaly samples for the Pushpins
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Figure 15. Structural anomaly samples for the Splicing Connectors
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Figure 16. Structural anomaly samples for the Juice Bottle
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Figure 17. Logical anomaly samples from modified MVTec AD [2]
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