
Domain Generalization with Correlated Style Uncertainty

The supplementary materials provide the pseudo-code
for implementing the Correlated Style Uncertainty (CSU)
model. To guarantee the reliability of reporting results, we
also conduct training stability analysis on PACS dataset. We
conduct an ablation experiment to analyze the position se-
lection effects on the Duke-Market1501 instance retrieval
task. Furthermore, we visualize the extracted feature using
t-SNE projection, which proves that CSU can help with ex-
tracting domain-invariant feature representations.

1. Pseudo Code
Here, we provide the pseudo-code for our CSU model.

As we can observe, this code is relatively easy to imple-
ment and can be encoded into most current models. Note
that we do not use the backpropagation of the normal Py-
Torch Eigh function for eigenvalue decomposition to avoid
instability during training. This is because the gradient cal-
culation relies on the smallest value of the eigenvalue dif-
ference 1

min(λi−λj)
[1].

Given eps, alpha, p=0.5
Input: x:B*C*H*W
Output: x:B*C*H*W
def decompose(matrix):

with torch.no_grad():
value, vect = eigh(matrix)

lmda = sqrt(vect.T@matrix@vect))
return vect@lmda@vect.T

def forward(x)
if random < p:

return x
mu = mean(x, dim=(2, 3))
sig = std(x, dim=(2, 3)) + eps
x_norm = (x - mu) / sig
corr_mu = decompose(mu.T@mu)
corr_sig = decompose(sig.T@sig)
rand_mu = randn_like(mu)@corr_mu
rand_sig = randn_like(sig)@corr_sig
inten = Beta(alpha, alpha).sample(N, 1)
mu = mu + inten*rand_mu
sig = sig + inten*rand_sig
x = mu + x_norm*sig
return x

Listing 1. An Pytorch-like pseudo code for CSU

This can induce extremely unstable training, considering
that we have many zero eigenvalues, as described in the
previous section. We assume that the direction is relatively

stable during the training to address this issue. The key for
backpropagation is calculating the eigenvalue or variance
intensity for the corresponding direction. Thus, we adopt an
algorithm that does not pass the gradient through the eigen-
vector. We show the pseudo implementation in 1

2. Training Reliability
We conduct the training process using the exact configu-

ration on the PACS dataset multi-time. Here we set α = 0.3.
We perform 20 times of experiments and calculate the per-
formance distribution to test the training stability. The stan-
dard deviations of Art, Cartoon, Photo, and Sketch are 0.35,
0.17, 0.12, and 0.30, respectively, and the standard devia-
tion of Average is 0.13. Figure 1 shows the result. We can
observe that the standard deviation is relatively low, and the
One-Sigma range is (84.90, 85.17), which indicates that the
training process is consistent and reliable.

84.22 84.92 85.61
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Std:0.35

Art

80.36 80.69 81.02
0.0

0.1

0.2

0.3

0.4 Std:0.17
Cartoon

96.11 96.35 96.59
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Std:0.12
Photo

77.57 78.17 78.77
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Std:0.3
Sketch

84.76 84.90 85.03 85.17 85.30
0.0

0.1

0.2

0.3

0.4 Std:0.13
Average Result

Figure 1. One visualization of training stability. We perform 20
times of experiments and calculate the standard deviations of each
category and the average performance. We can observe that the
training is stable given the low standard deviation value.

3. Position Selection For Instance Retrieval
We conduct an ablation experiment to analyze the posi-

tion selection effects on the Duke-Market1501 instance re-
trieval task. Here we show the influence of different insert-

1

01 12 23 34 45 012 123 234 345 0123 1234 2345 0123412345 01234520

22

24

26

A
cc

ur
ac

y
(%

)

24.1

25
24.5 24.6

21.8

24.7

25.9
25.4

22

24.5

25.6

23.9

25.3

24.4 24.4

Duke to Market1501
Baseline 19.3

01 12 23 34 45 012 123 234 345 0123 1234 2345 0123412345 01234520

22

24

26

A
cc

ur
ac

y
(%

)

23.1

24.4

22.5

24.3

22.6

24.3
23.9

24.5

23.1

26.1
26.4

24.4

25.3 25.3

24.5

Market1501 to Duke
Baseline 20.4

Figure 2. One visualization of different inserting positions on the instance retrieval experiments. We can achieve better performance than
reporting by changing the inserting position. This shows the best position configuration might vary by task rather than one fixed conclusion.

Class
dog
elephant
giraffe
guitar
horse
house
person

Domain
cartoon
photo
art_painting
sketch

Domain
cartoon
photo
art_painting
sketch

Figure 3. 2-D Visualization of Flattened Feature Maps. We can clearly observe that the trained model can effectively obtain more domain-
invariant feature representations. For 4 domains of the PACS dataset, including Art, Cartoon, Photo, and Sketch, we select 64 cases from
every category (7 categories in total) under each domain.

ing positions in Figure 2. We can find that overall trends are
similar to the classification tasks. Notably, we can achieve
impressive improvement compared to the reported result
(the ”012345” group) by changing position. This indicates
that the best position configuration may vary by task rather
than one fixed conclusion.
4. Visualization of Flattened Feature Maps

To intuitively understand the effectiveness of our
method, we provide the t-SNE visualization map of feature
vectors extracted from the trained model. As shown in Fig-
ure 3, we can find that with the CSU, the distance between
different domains within the same category is small, while
the distance between different classes, regardless of the do-

main, is immense. Therefore, we can show that the trained
model can obtain more domain-invariant feature represen-
tations, indicating a more vital generalization ability.

References
[1] Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu.

Matrix backpropagation for deep networks with structured
layers. In Proceedings of the IEEE international conference
on computer vision, pages 2965–2973, 2015. 1

