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1. Proofs

Theorem 1. Theoretical analysis of IGGAN.
Case 1: IGGAN with NDA in D1 and PDA in D2

Let P̄ ∈ P(χ) be any distribution over χ with disjoint
support than pdata, such that supp(pdata) ∩ supp(P̄ ) = ∅.
Let PT ∈ pdata be any distribution over real data. Let D1 :
χ→ R andD2 : χ→ R be the set of discriminators over χ,
f : R≥0 → R be a convex, semi-continuous function such
that f(1) = 0, f∗ be the convex conjugate of f , f

′
be the

derivative of f , Gθ be a distribution with sample space χ,
and GTθ ∈ Gθ be any distribution over sample space χ. T
is one kind of PDA method. Then ∀λ ∈ (0, 1], we have

argmin
Gθ∈P (χ)

max
D1,D2:χ→R

Lf (Gθ, D1, D2)

= argmin
Gθ∈P (χ)

max
D1,D2:χ→R

Lf (λGθ + (1− λ)P̄ ,D1, D2)

= pdata,

(S1)
where Lf (Gθ, D1, D2)=Ex∼pdata [D1(x)]−Ex∼Gθ [f

∗(D1(x))]+

Ex∼pdata [D2(T (x))] − Ex∼Gθ [f
∗(D2(T (x)))] is the objective

function for IGGAN following NDA-GAN [5] and f-GAN
[4]. The optimal discriminators forD1 andD2 are different,
shown as follows:

argmax
D1:χ→R

Lf (λGθ + (1− λ)P̄ ,D1)

= f
′
(pdata/(λGθ + (1− λ)P̄ ).

(S2)

argmax
D2:χ→R

Lf (Gθ, D2) = f
′
(PT /GTθ ). (S3)

Proof. Let p(x), p̄(x), pT (x) and q(x) denote the density
functions of pdata, P̄ , PT and Gθ respectively (and P , P̄ ,
PT , Q for the respective distributions). For D1, following
Theorem 1 and Appendix C as in [5], we can obtain the
conclusion that we must have q(x) = p(x) for all x ∈ χ
in D1. Thus, the generator distribution recovers the data
distribution at the Nash equilibrium. For D2, according to
Theorem 1 and section V.B in [6], the generator distribution
still recovers the data distribution at the Nash equilibrium.

To sum up, the generator distribution recovers the data

distribution at the Nash equilibrium for both D1 and D2,
which guarantees the convergence of IGGAN.

Moreover, from Lemma 1 in [3], we have that

argmax
D:χ→R

Lf (Q,D) = f
′
(pdata/Q). (S4)

Therefore, by replacing Q with λGθ + (1 − λ)P̄ in D1

and pdata with PT as well as Q with GTθ in D2, we have

argmax
D1:χ→R

Lf (λGθ + (1− λ)P̄ ,D1)

= f
′
(pdata/(λGθ + (1− λ)P̄ ),

(S5)

argmax
D2:χ→R

Lf (Gθ, D2) = f
′
(PT /GTθ ). (S6)

Eq.(S5) and Eq.(S6) show that the optimal dis-
criminators are indeed different for the D1 and D2.

Case 2: IGGAN with different PDAs in D1 and D2

Let PT1 , PT2 ∈ pdata be any distribution over real data.
Let D1 : χ → R and D2 : χ → R be the set of discrimi-
nators over χ, f : R≥0 → R be a convex, semi-continuous
function such that f(1) = 0, f∗ be the convex conjugate
of f , f

′
be the derivative of f , Gθ be a distribution with

sample space χ, and GT1

θ , G
T2

θ ∈ Gθ be any distribution
over sample space χ. T1 and T2 are different PDA methods.
Then ∀λ ∈ (0, 1], we have

argmin
Gθ∈P (χ)

max
D1,D2:χ→R

Lf (Gθ, D1, D2) = pdata, (S7)

where Lf (Gθ, D1, D2) = Ex∼pdata [D1(T1(x)] −

Ex∼Gθ [f
∗(D1(T1(x))]+Ex∼pdata [D2(T2(x))]−Ex∼Gθ [f

∗(D2(T2(x)))]

is the objective function for IGGAN following NDA-
GAN [5] and f-GAN [4]. The optimal discriminators for
D1 and D2 are different, shown as follows:

argmax
D1:χ→R

Lf (Gθ, D1) = f
′
(PT1/GT1

θ ). (S8)

argmax
D2:χ→R

Lf (Gθ, D2) = f
′
(PT2/GT2

θ ). (S9)

Proof. Let p(x), pT1(x), pT2(x) and q(x) denote the density
functions of pdata, PT1 , PT2 and Gθ respectively (and P ,
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Figure S1. Images generated on the CIFAR-10 and STL-10 datasets by IGGAN: (a) Unconditional generation results on CIFAR-10 by
IGGAN with Diff-Augment as PDA and Jigsaw as NDA (FID 10.68). (b) Conditional generation results on CIFAR-10 by IGGAN with
Diff-Augment as PDA and Cutmix as NDA (FID 8.15). Unconditional generation results on STL-10 by IGGAN with Diff-Augment as
PDA and Jigsaw as NDA (FID 21.39). Best viewed in color.

PT1 , PT2 , Q for the respective distributions). For both D1

andD2, following Theorem 1 and section V.B in [6], we can
conclude that the generator distribution recovers the data
distribution at the Nash equilibrium.

To conclude, the generator distribution recovers the data
distribution at the Nash equilibrium for both D1 and D2,
which guarantees the convergence of IGGAN.

Moreover, from Lemma 1 in [3], we have that

argmax
D:χ→R

Lf (Q,D) = f
′
(pdata/Q). (S10)

Therefore, by replacing pdata with PT1 and Q with GT1

θ

in D1 and pdata with PT2 and Q with GT2

θ in D2, we have

argmax
D1:χ→R

Lf (Gθ, D1) = f
′
(PT1/GT1

θ ). (S11)

argmax
D2:χ→R

Lf (Gθ, D2) = f
′
(PT2/GT2

θ ). (S12)

Eq.(S10) and Eq.(S11) show that the optimal dis-
criminators are indeed different for D1 and D2.

The training algorithms of IGGAN (NDA + PDA) and
IGGAN (PDA + PDA) are shown in Algorithms 1 and 2,
respectively.

2. More Generated Images

According to the main paper, more generated results
with IGGAN (BigGAN backbone [1]) on CIFAR-10/STL-
10, CIFAR-100 and CelebA are shown in Figures S1, S2
and S3, respectively. More generated results with IG-
GAN (StyleGAN2 backbone [2]) on FFHQ and LSUNCAT
datasets are shown in Figure S4.

(a) (b)

Figure S2. Images generated on the CIFAR-100 dataset by IG-
GAN: (a) Unconditional generation results on CIFAR-100 by IG-
GAN with Diff-Augment as PDA and Jigsaw as NDA (FID 16.08).
(b) Conditional generation results on CIFAR-100 by IGGAN with
Diff-Augment as PDA and Jigsaw as NDA (FID 11.30). Best
viewed in color.

Figure S3. Unconditional images generated on the CelebA dataset
by IGGAN (FID 20.63). Best viewed in color.



FFHQ-1K FID 20.16 FFHQ-5K FID 9.47 

FFHQ-10K FID 7.14 FFHQ-30K FID 4.89 

LSUNCAT-1K FID 30.80 LSUNCAT-5K FID 15.85 

LSUNCAT-10K FID 11.20 LSUNCAT-30K FID 9.14 

Figure S4. Image generated by IGGAN (PDA + PDA) on FFHQ and LSUNCAT datasets. Following Diff-Augment [7], we perform
generated results on 30K, 10K, 5K and 1K training samples. Best viewed in color.



Algorithm 1 Training algorithm for IGGAN (NDA +
PDA).
Require: The number of D1 iterations nD1 , the number

of D2 iterations nD2 , batchsize m = 64, f1w (x) =
Ex∼pdata [D1w (x)] and f1

1w = −Ex∼Gθ [f∗(D1w (x))]
determine the objective function of D1w , f2w =
Ex∼pdata [D2w (T (x))] and f2

2w = −Ex∼Gθ [f∗(D2w (T (x)))]
determine the objective function of D2w , where T is one PDA
method. P̄ is the distribution of the NDA. w and θ are the
parameters of the Ds and G, respectively.
while θ has not converged do

for t=1, ..., nD1 do

Samples
{
x(i)

}m
i=1
∼ Pdata

Samples
{
z(i)

}m
i=1
∼ Pz

Update w using SGD by ascending with:

Ow 1
m

∑m
i=1[f1w (x(i)) + f1

1w ((1 − λ)P̄ +

λGθ(z
(i)))]

end for
Samples

{
x(i)

}m
i=1
∼ Pdata

Samples
{
z(i)

}m
i=1
∼ Pz

Update θ using SGD by ascending with:

Oθ 1
m

∑m
i=1 f

1
1w (Gθ(z

(i)))

for t=1, ..., nD2 do

Samples
{
x(i)

}m
i=1
∼ Pdata

Samples
{
z(i)

}m
i=1
∼ Pz

Update w using SGD by ascending with:

Ow 1
m

∑m
i=1[f2w (x(i)) + f2

2w (Gθ(z
(i)))]

end for
Samples

{
x(i)

}m
i=1
∼ Pdata

Samples
{
z(i)

}m
i=1
∼ Pz

Update θ using SGD by ascending with:

Oθ 1
m

∑m
i=1 f

2
2w (Gθ(z

(i)))

end while
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