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1 Proofs

1.1 Proofs of Lemma 1
Lemma 1. Given two types of objective functions Ex∼βP+γQ[f(x)] and βEx∼P [f(x)]+γEx∼Q[f(x)], we have that

Ex∼βP+γQ[f(x)] = βEx∼P [f(x)] + γEx∼Q[f(x)]. (S1)

Proof.

Ex∼βP+γQ[f(x)] =

∫
x

(βP + γQ)f(x)dx

= β

∫
x

Pf(x)dx+ γ

∫
x

Qf(x)dx

= βEx∼P [f(x)] + γEx∼Q[f(x)].

(S2)

That concludes the proof.

1.2 Proofs of Proposition 1
Proposition 1. If the generator G is fixed, the optimal discriminator D∗(T (x)) for ANDA is:

D∗(T (x)) =
PT
R (T (x))

PT
R (T (x)) + λ(1− α)P̂T

R (T (x)) + (1− λ)(1 + λ
1−λ

α)PT
G (T (x))

. (S3)

Proof. Given any fixed G, the training object of the discriminator D is to maximize the VD(G,D) in Eq.(7) in the
main paper, we have that

VD(G,D) =

∫
T (x)

[PT
R (T (x)) log(D(T (x)) + λ(1− α)P̂T

R (T (x)) log(1−D(T (x))

+ (1− λ)(1 +
λ

1− λ
α)PT

G (T (x)) log(1−D(T (x))]dT (x),

(S4)

which can be simplified as:

VD(G,D) =

∫
T (x)

[PT
R (T (x)) log(D(T (x))

+ (λ(1− α)P̂T
R (T (x)) + (1− λ)(1 +

λ

1− λ
α)PT

G (T (x))) log(1−D(T (x))]dT (x).

(S5)

Following the proof in APA [1], for any (m,n) ∈ R2 \ {0, 0}, the function f(x) = m log(x) + n log(1 − x)
achieves its maximum value in the range [0, 1] at m

m+n . Besides, the discriminator D is defined only inside of
supp(PT

R ) ∪ supp(PT
G ), where supp is the set-theoretic support. Therefore, we conclude the proof for Proposition 1.
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1.3 Proofs of Proposition 2
Proposition 2. Given the optimal discriminator D∗(T (x)), the minimization of C(G) in Eq.(10) in the main paper
can be regarded as:

C(G) = −2 log 2 + 2JS(PT
R ||λ(1− α)P̂T

R + (1− λ)(1 +
λ

1− λ
α)PT

G ). (S6)

Proof. For C(G) in Eq.(10) in the main paper, we have that

C(G) = −2 log 2 +

∫
T (x)

[PT
R (T (x)) log 2×D∗(T (x))

+ (λ(1− α)P̂T
R (T (x)) + (1− λ)(1 +

λ

1− λ
α)PT

G (T (x))) log 2× (1−D∗(T (x))]dT (x).

(S7)

By substituting Eq.(S3) into Eq.(S7), we can achieve:

C(G) = −2 log 2 + KL(PT
R ||

PT
R + λ(1− α)P̂T

R + (1− λ)(1 + λ
1−λ

α)PT
G

2
)

+ KL(λ(1− α)P̂T
R + (1− λ)(1 +

λ

1− λ
α)PT

G ||
PT
R + λ(1− α)P̂T

R + (1− λ)(1 + λ
1−λ

α)PT
G

2
).

(S8)

By simplifying Eq.(S8), we have that

C(G) = −2 log 2 + 2JS(PT
R ||λ(1− α)P̂T

R + (1− λ)(1 +
λ

1− λ
α)PT

G ). (S9)

That concludes the proof.

1.4 Proofs of Theorem 1
Theorem 1. Given the optimal discriminator D∗(T (x)), the minimization of VG(G,D∗) can be regarded as:

VG(G,D∗) =
1

(1− λ)(1 + λ
1−λ

α)
[KL(λ(1− α)P̂T

R + (1− λ)(1 +
λ

1− λ
α)PT

G ||PT
R )

− 2JS(PT
R ||λ(1− α)P̂T

R + (1− λ)(1 +
λ

1− λ
α)PT

G )].

(S10)

Proof. By investigating the item KL(λ(1− α)P̂T
R + (1− λ)(1 + λ

1−λα)P
T
G ||PT

R ), we have that

KL(λ(1− α)P̂T
R + (1− λ)(1 +

λ

1− λ
α)PT

G ||PT
R )

= ET (x)∼λ(1−α)P̂T
R

+(1−λ)(1+ λ
1−λ

α)PT
G
[log

λ(1− α)P̂T
R (T (x)) + (1− λ)(1 + λ

1−λ
α)PT

G (T (x))

PT
R (T (x))

]

= ET (x)∼λ(1−α)P̂T
R

+(1−λ)(1+ λ
1−λ

α)PT
G
[log

λ(1−α)P̂T
R (T (x))+(1−λ)(1+ λ

1−λ
α)PT

G (T (x))

PT
R

(T (x))+λ(1−α)P̂T
R

(T (x))+(1−λ)(1+ λ
1−λ

α)PT
G

(T (x))

PT
R

(T (x))

PT
R

(T (x))+λ(1−α)P̂T
R

(T (x))+(1−λ)(1+ λ
1−λ

α)PT
G

(T (x))

]

= ET (x)∼λ(1−α)P̂T
R

+(1−λ)(1+ λ
1−λ

α)PT
G
[log

1−D∗(T (x))

D∗(T (x))
]

= ET (x)∼λ(1−α)P̂T
R

+(1−λ)(1+ λ
1−λ

α)PT
G
[log(1−D∗(T (x)))]− ET (x)∼λ(1−α)P̂T

R
+(1−λ)(1+ λ

1−λ
α)PT

G
[log(D∗(T (x)))].

(S11)

Based on Lemma 1, Eq.(S11) can be formulated as:

KL(λ(1− α)P̂T
R + (1− λ)(1 +

λ

1− λ
α)PT

G ||PT
R )

= ET (x)∼λ(1−α)P̂T
R
[log(1−D∗(T (x)))] + ET (x)∼(1−λ)(1+ λ

1−λ
α)PT

G
[log(1−D∗(T (x)))]

− ET (x)∼λ(1−α)P̂T
R
[log(D∗(T (x)))]− ET (x)∼(1−λ)(1+ λ

1−λ
α)PT

G
[log(D∗(T (x)))],

(S12)
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where ET (x)∼λ(1−α)P̂T
R
[log(1 −D∗(T (x)))] and −ET (x)∼λ(1−α)P̂T

R
[log(D∗(T (x)))] have no contribution to update

the G. Thus, these two items can be ignored when we update the G. Then, by applying the Lemma 1 and Proposition
2 in Eq.(S12), we can obtain that

− ET (x)∼PT
G
[logD∗(T (x))] = − 1

(1− λ)(1 + λ
1−λ

α)
ET (x)∼(1−λ)(1+ λ

1−λ
α)PT

G
[log(D∗(T (x)))]

=
1

(1− λ)(1 + λ
1−λ

α)
[KL(λ(1− α)P̂T

R + (1− λ)(1 +
λ

1− λ
α)PT

G ||PT
R )

− 2JS(PT
R ||λ(1− α)P̂T

R + (1− λ)(1 +
λ

1− λ
α)PT

G )].

(S13)

That concludes the proof.
The training algorithm of ANDA is shown in Algorithm 1.

Algorithm 1 Training algorithm for ANDA.

Require: The number of D iterations nD, batchsize m, and functions fw(x) = ET (x)∼PT
R
[log(Dw(T (x)))], f1

w(x) =

ET (x)∼λ(1−α)P̂T
R
[log(1 − Dw(T (x)))]], f2

w(x) = ET (x)∼(1−λ)(1+ λ
1−λα)PT

G
[log(1 − Dw(T (x)))]] and gθ(x) =

−ET (x)∼PT
G
[log(D(T (x)))], where T is one augmentation method used to transform data, λ and α have the same

meaning in section 3.3, P̂T
R be the distribution of transformed NDA real samples. θ and w are the parameters of

G and D, respectively. z is the input noise of G.

while θ has not converged do
for t=1, ..., nD do

Samples
{
x(i)

}m

i=1
∼ PR

Samples
{
z(i)

}m

i=1
∼ Pz

Update w using SGD by ascending with:
▽w

1
m

∑m
i=1[fw(x

(i)) + f1
w(x

(i))

+f2
w((Gθ(z

(i)))]
end for
Samples

{
x(i)

}m

i=1
∼ PR

Samples
{
z(i)

}m

i=1
∼ Pz

Update θ using SGD by ascending with:
▽θ

1
m

∑m
i=1[gθ(Gθ(z

(i)))]
end while

2 More Details about Experiments

2.1 Experiments Requirements
Hardware: NVIDIA DGX with 4 Tesla V100 (32G) GPUs.
Software: Linux with 64-bit Python 3.7 and PyTorch 1.7.1, CUDA toolkit 11.0 and GCC version is 6.1.0.
Python libraries: click, requests, tqdm, pyspng, ninja, imageio-ffmpeg 0.4.3 and h5py.

2.2 More details about Implement
In the main paper, we implement our ANDA on four different DE-GANs, i.e., StyleGAN2 + Diff-Augment [2],
StyleGAN2 + ADA [3], Diffusion-GAN (StyleGAN2 backbone) [4] and InsGen [5], with selecting StyleGAN2 as the
backbone. For the implementation, the training regularization applied in the StyleGAN2 [6] is preserved, including
path length regularization, lazy regularization, and style mixing regularization. Furthermore, the Exponential moving
average of generator weights, non-saturating logistic loss with R1 regularization, and Adam [7] optimizer are also
adopted. For a fair comparison, we select the same training iterations as the baseline. All the results in the paper are
based on Mixed-precision training, i.e., FP16.
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Method FFHQ-100 FFHQ-1K FFHQ-2K FFHQ-5K
Diffusion-GAN (StyleGAN2 backbone) [4] 91.11 37.40 25.11 15.01
+ANDA 61.66 33.96 22.91 13.66

Table S1: FID score (lower is better) on 256 × 256 FFHQ dataset. Following FakeCLR [8], we perform experiments
on 100, 1K, 2K and 5K training samples on the FFHQ dataset. Massive Augmentation (MA) is applied in all of the
methods. For a fair comparison, FID is measured using 50K generated samples; the full training set (70K) is used as
the reference distribution. The FIDs are averaged over three runs; all standard deviations are less than 1%, relatively.
The results of Diffusion-GAN (StyleGAN2 backbone) are run by ourselves based on the official open-source codes.

2.3 More Experiments on the FFHQ Dataset

FFHQ-2K FID 25.11 FFHQ-2K FID 22.91 (-2.20)

FFHQ-100 FID 91.11 FFHQ-100 FID 61.66 (-29.45)

FFHQ-1K FID 37.40 FFHQ-1K FID 33.96 (-3.44)

FFHQ-5K FID 15.01 FFHQ-5K FID 13.66 (-1.35)

(a) Diffusion-GAN (StyGAN2 backbone) (b) Diffusion-GAN (StyGAN2 backbone) + ANDA

Fig. S1: The comparison of generated images with (a) Diffusion-GAN (StyleGAN2 backbone) and (b) Diffusion-GAN
(StyleGAN2 backbone) + ANDA on the FFHQ dataset. Adding ANDA to Diffusion-GAN (StyleGAN2 backbone)
can effectively improve the leaking of augmentations problem, especially in the low-shot data setting, thus leading to
a better quality of generated images. Best viewed in color.

We show the additional experimental results on the FFHQ dataset [6] by comparing with the latest Diffusion-GAN
(StyleGAN2 backbone) [4]. Following the experiments in FakeCLR [8], the subset of the training set, i.e., less than
5K, is used for training DE-GANs, and the full training set (70K) is used as the reference distribution to calculate the
FID. The results are shown in Table S1. Adding ANDA can achieve further improvement compared with the baseline.
To further demonstrate this, the compared generated images on the FFHQ dataset with Diffusion-GAN (StyleGAN2
backbone) are shown in Figure S1.

2.4 More Generated Images Results on the Low-shot Datasets
To further demonstrate the superiority of the proposed ANDA, the additional compared generated images on
AnimalFace-cat and AnimalFace-dog datasets with Diffusion-GAN (StyleGAN2 backbone) are shown in Figure
S2. The generated images by adding ANDA on different other DE-GAN methods, i.e., StyleGAN2 + Diff-Augment,
StyleGAN2 + ADA and InsGen, on Low-shot datasets are shown in Figures S3, S4 and S5, respectively.
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Animal-Face Cat FID 33.18 Animal-Face Cat FID 29.26 (-3.92)

Animal-Face Dog FID 68.15 Animal-Face Dog FID 65.74 (-2.41)

(a) Diffusion-GAN (StyGAN2 backbone) (b) Diffusion-GAN (StyGAN2 backbone) + ANDA

Fig. S2: The comparison of generated images with (a) Diffusion-GAN (StyleGAN2 backbone) and (b) Diffusion-
GAN (StyleGAN2 backbone) + ANDA on the Animal-Face Dog and Animal-Face Cat datasets. Adding ANDA to
Diffusion-GAN (StyleGAN2 backbone) can effectively improve the leaking of augmentations problem, thus leading
to a better quality of generated images. Best viewed in color.

100-shot-Obama FID 38.61 (-8.26) 100-shot-Panda FID 10.63 (-1.43) 100-shot-Grumpy Cat FID 24.31 (-2.77)

Animal-Face Cat FID 37.38 (-5.06) Animal-Face Cat FID 49.66 (-9.19)

Fig. S3: Images generated by StyleGAN2 + Diff-Augment + ANDA on 100-shot Obama, 100-shot Panda, 100-shot
Grumpy Cat, Animal-Face Cat and Animal-Face Dog datasets. The red value shows the improvements made by adding
ANDA to the baseline StyleGAN2 + Diff-Augment. Best viewed in color.
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100-shot-Obama FID 39.66 (-6.03) 100-shot-Panda FID 11.72 (-1.18) 100-shot-Grumpy Cat FID 25.11 (-1.51)

Animal-Face Cat FID 38.15 (-2.62) Animal-Face Cat FID 54.45 (-2.38)

Fig. S4: Images generated by StyleGAN2 + ADA + ANDA on 100-shot Obama, 100-shot Panda, 100-shot Grumpy
Cat, Animal-Face Cat and Animal-Face Dog datasets. The red value shows the improvements made by adding ANDA
to the baseline StyleGAN2 + ADA. Best viewed in color.

100-shot-Obama FID 23.55 (-8.87) 100-shot-Panda FID 8.00 (-1.85) 100-shot-Grumpy Cat FID 18.01 (-4.00)

Animal-Face Cat FID 23.87 (-9.14) Animal-Face Dog FID 39.20 (-5.73)

Fig. S5: Images generated by InsGen + ANDA on 100-shot Obama, 100-shot Panda, 100-shot Grumpy Cat, Animal-
Face Cat and Animal-Face Dog datasets. The red value shows the improvements made by adding ANDA to the
baseline InsGen. Best viewed in color.
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3 Discussion of Boarder Impact and Limitations
Boarder Impact. This paper proposes a novel adaptive negative augmentation (ANDA) method for DE-GANs to
benefit the practical deployment of training GANs with limited data with negligible computational cost. The technical
contributions of this paper do not raise any particular ethical challenges. However, because technology is usually
a double-edged sword, our work may also bring potential social risks when applying GANs with limited data. For
example, it may ease the fake media synthesis using only limited data.
Limitations. The proposed ANDA can alleviate the leaking of augmentations problem in DE-GANs, but it cannot
solve this problem completely. As shown in Figure 1, adding ANDA in Diffusion-GAN (StyleGAN2 backbone) can
also produce slightly noise-based images. However, with the rapid technical development in recent years, we think
this limitation will be well solved in the future.
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