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In this supplementary material, we provide additional
details of the experiment protocols in Section 1, and illus-
tration of the fusion weights in Section 2.

1. Additional Details of Experiment Protocols
Model Architecture. PhysMoP includes different com-
ponents to extract features, predict unknown physical pa-
rameters, and predict data-driven estimates and fusion
weightis. Details of the model architecture are illustrated
in Figure 1.

Datasets. For AMASS, its training subset consists of AC-
CAD [4], MPI-Limits [2], CMU [1], EyesJapanDataset [8],
KIT [7], EKUT [9], TotalCapture [9], and TCDhandMo-
cap [6]. When computing the error metrics, we evaluate
on the same 256 samples and 22 body joints as [5] for Hu-
man3.6M. We evaluate on the same 18 body joints as used
by [5] for both AMASS and 3DPW.

Implementation. Our implementation is on PyTorch.
The frame rate of the motion data is 25 for Human3.6M,
and 30 for AMASS and 3DPW, respectively. For data pre-
processing, we apply a Gaussian filter to smooth the com-
puted angles and the body translation to reduce the impact
of unrelated noise introduced during data collection. We set
a batch size of 64 for training the data-driven and physics-
based models, and a batch size of 196 for training the fusion
model. We utilize joint angles in SMPL format. For Hu-
man3.6M, we obtain SMPL data from [10] since the orig-
inal dataset does not include SMPL data. As for AMASS
and 3DPW, we directly use the provided SMPL data.

2. Illustration of Fusion Weights
To provide deep insights towards the fusion process, we

present examples of the fusion weights in Figure 2. The
examples are testing sequences from Human3.6M. The fu-
sion weights indicate the importance of the data-driven es-
timates at a certain time stamps. As shown, the weights are

FC

MLPh,p

Transpose

𝒉!

x48

FC

LN

Transpose

Flatten

FC

𝒒" #
$

(75 ∗ 𝑇, 75)

(𝑇, 𝑇)

(75, 75) FC

MLPh,g

Transpose

𝒉𝒈

x16

FC

LN

Transpose

Flatten

(𝑇, 𝑇)

(75, 75)

'𝒒" $&'()
$&'(#

MLPM MLPG MLPC

𝒉! 𝒉*

FC

ReLU

FC

ReLU

FC

(4 ∗ 75, 512)

(512, 512)

(512, 2850)

TriUL

𝐌

𝒉! 𝒉*

FC

ReLU

FC

ReLU

FC

(4 ∗ 75, 512)

(512, 256)

(256, 75)

𝐆

𝒉! 𝒉*

FC

ReLU

FC

ReLU

FC

(4 ∗ 75, 512)

(512, 256)

(256, 75)

𝐂

FC

MLPdata

Transpose

x48

FC

LN

Transpose

FC

𝒒" #
$

(75, 75)

(𝑇, 𝑇)

(75, 75)

!𝒒!"#"#
$%&
$%'

MLPfusion

!𝒒!"#"#
$%&
$%'

MLPh,p,16

!𝒒!"#"#
$%&
$%' 

MLPh,p,16

!𝒒()*+,-+#
$%&
$%'

FC

Time Position Encoding

(75 ∗ 3, 1)

𝒉!

Figure 1. Model architecture. We illustrate the neural network
architecture of the main components of PhysMoP. “FC”, “LN”,
“ReLU” stands for the fully connected layer, layer normaliza-
tion [3], and activation layer, respectively. The dimension of each
fully connected layer is shown on its right side. “Transpose” ex-
changes the spatial and temporal dimension. “TriUL” generates
a symmetric matrix from a vector prediction. “MLPh,p,16” repre-
sents the framework that has the same architecture as “MLPh,p”
but is different in the number of blocks of the MLP (16 v.s. 48).

1



Figure 2. Joint angles estimated by different models (top) and
the corresponding fusion weights (bottom).

smaller at shorter future time stamps as the physics-based
model is advantageous in accurately capture the short-term
physical movements. Moreover, the fusion weights become
larger and occasionally exhibit oscillations around 500ms
or longer time horizons. The reason is that we perform
the fusion in an iterative manner which fully leverages the
power of the physics-based model and makes rectification
only when the estimates tend to diverge. Meanwhile, it is
worth noting that values of the fusion weights are small
if the estimates generated by the physics-based model are
closer to the ground truth (as seen in the left column of Fig-
ure 2), indicating a reduced dependency on the data-driven
model.
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