Semantic Transfer from Head to Tail: Enlarging Tail Margin for Long-Tailed Visual Recognition (Supplementary Materials)

Shan Zhang ${ }^{*, 1}$, Yao $\mathrm{Ni}^{*, 1}$, Jinhao Du ${ }^{2}$, Yanxia Liu ${ }^{\dagger, 3}$, Piotr Koniusz ${ }^{\dagger, 4,1}$
${ }^{1}$ Australian National University, ${ }^{2}$ Peking University, ${ }^{3}$ Beijing Union University, ${ }^{4}$ Data61 ${ }^{1}$ CSIRO ${ }^{1}$ firstname.lastname@anu.edu.au, ${ }^{2}$ dujinhao02@gmail.com, ${ }^{3}$ yanxia.liu@163.com

A. Sketch Proofs in Section 3

A.1. Proof of Assumption 1

Assumption 1. Assume that after augmentation, the feature $\tilde{\boldsymbol{a}}_{i}^{t}$ passed to the classifier, which comes from a tail sample \boldsymbol{x}_{i}^{t}, can be approximately represented by a distribution $\tilde{\boldsymbol{a}}_{i}^{t} \sim \mathcal{N}\left(\boldsymbol{a}_{i}^{t}, \Delta \boldsymbol{\Sigma}_{\text {th }}^{i}\right)$. Here, \boldsymbol{a}_{i}^{t} is the feature obtained without augmentation, and $\Delta \boldsymbol{\Sigma}_{\text {th }}^{i}$ is a positive definite covariance matrix.

Proof: For a tail class k_{t}, each unaugmented feature \boldsymbol{a}_{i}^{t} comes from $\mathcal{N}\left(\boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t}\right)$, where $\boldsymbol{\mu}_{t}$ and $\boldsymbol{\Sigma}_{t}$ represent the mean and covariance for class k_{t}. The augmentation operation in Eq. 6 transforms the \boldsymbol{a}^{t} into $\tilde{\boldsymbol{a}}^{t}$, which follows $\mathcal{N}\left(\boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t h}\right)$, with $\boldsymbol{\Sigma}_{t h}$ being an approximation to the covariance matrix $\boldsymbol{\Sigma}_{h}$ (Referring to $\S A .4$, the covariance of augmented tail samples will be close to that of semantically similar head samples under the optimal transformation matrix.). For each i, there is always a suitable matrix $\Delta \boldsymbol{\Sigma}_{t h}^{i}$ that ensures augmented features for class k_{t} align closely with $\boldsymbol{\Sigma}_{t h}$ or $\boldsymbol{\Sigma}_{h}$. This alignment arises from the synergy of the augmentation method and variations during training, effectively shaping \boldsymbol{a}_{i}^{t} into $\tilde{\boldsymbol{a}}_{i}^{t} \sim \mathcal{N}\left(\boldsymbol{a}_{i}^{t}, \Delta \boldsymbol{\Sigma}_{\text {th }}^{i}\right)$.
Remark: Assumption 1 posits that under mild assumptions the augmentation naturally shifts \boldsymbol{a}_{i}^{t} to $\tilde{\boldsymbol{a}}_{i}^{t} \sim \mathcal{N}\left(\boldsymbol{a}_{i}^{t}, \Delta \boldsymbol{\Sigma}_{\text {th }}^{i}\right)$.

A.2. Proof of Lemma 2

Lemma 2. Given the negative log softmax function, the loss L_{k} for samples of class k without augmentation can be derived as:

$$
\begin{align*}
L_{k} & =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}}-\log \frac{e^{\boldsymbol{w}_{k}^{T} \boldsymbol{a}_{i}+b_{k}}}{\sum_{j=1}^{K} e^{\boldsymbol{w}_{j}^{T} \boldsymbol{a}_{i}+b_{j}}} \\
& =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \left(1+\sum_{j \neq k} e^{d_{i}\left\|\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right\|_{2} \cdot \operatorname{sign}\left(\cos \theta_{i, j k}\right)}\right) \tag{12}
\end{align*}
$$

Drawing upon [37], the decision boundary between class j and class k can be formulated as: $\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \boldsymbol{a}+\left(b_{j}-b_{k}\right)=0$. d_{i} is the distance from point \boldsymbol{a}_{i} to the decision boundary, $\theta_{i, j k}$ denotes the angle between $\boldsymbol{w}_{j}-\boldsymbol{w}_{k}$ and \boldsymbol{a}_{i}.

[^0]
Proof:

$$
\begin{align*}
L_{k} & =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}}-\log \frac{e^{\boldsymbol{w}_{k}^{T} \boldsymbol{a}_{i}+b_{k}}}{\sum_{j=1}^{K} e^{\boldsymbol{w}_{j}^{T} \boldsymbol{a}_{i}+b_{j}}} \\
& =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \frac{\sum_{j=1}^{K} e^{\boldsymbol{w}_{j}^{T} \boldsymbol{a}_{i}+b_{j}}}{e^{\boldsymbol{w}_{k}^{T} \boldsymbol{a}_{i}+b_{k}}} \\
& =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \left(1+\sum_{j \neq k} e^{\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \boldsymbol{a}_{i}+\left(b_{j}-b_{k}\right)}\right) \\
& =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \left(1+\sum_{j \neq k} e^{d_{i}\left\|\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right\|_{2} \cdot \operatorname{sign}\left(\cos \theta_{i, j k}\right)}\right) \tag{13}
\end{align*}
$$

To derive Eq. 13, let us inspect the geometric representation. Focus on the distance d_{i} from \boldsymbol{a}_{i} to the decision boundary $\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \boldsymbol{a}+\left(b_{j}-b_{k}\right)=0$:

$$
\begin{equation*}
d_{i}=\frac{\left|\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \boldsymbol{a}_{i}+\left(b_{j}-b_{k}\right)\right|}{\left\|\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right\|_{2}} \tag{14}
\end{equation*}
$$

For orientation, when \boldsymbol{a}_{i} and \boldsymbol{w}_{k} lie on the same side of the decision boundary, the sign of cosine of the angle between $\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)$ and \boldsymbol{a}_{i} is given by $\operatorname{sign}\left(\cos \theta_{i, j k}\right)=-1$. In the opposite scenario, the sign would be positive. Integrating this insight with Eq. 14, we deduce:

$$
\begin{equation*}
\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \boldsymbol{a}_{i}+\left(b_{j}-b_{k}\right)=d_{i}\left\|\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right\|_{2} \cdot \operatorname{sign}\left(\cos \theta_{i, j k}\right) \tag{15}
\end{equation*}
$$

This directly gives rise to Eq. 13.

A.3. Proof of Theorem 1

Theorem 1. Assume Assumption 1 holds when using our augmentation. The loss function L_{k}^{t} for tail class k is:

$$
\begin{align*}
L_{k}^{t} & =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \mathbb{E}_{\tilde{\boldsymbol{a}}_{i}^{t}}\left[-\log \frac{e^{\boldsymbol{w}_{k}^{T} \tilde{\boldsymbol{a}}_{i}^{t}+b_{k}}}{\sum_{j=1}^{K} e^{\boldsymbol{w}_{j}^{T} \tilde{\boldsymbol{a}}_{i}^{t}+b_{j}}}\right] \\
& \leq \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \left(1+\sum_{j \neq k} \beta_{j k}^{i} e^{d_{i}\left\|\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right\|_{2} \cdot \operatorname{sign}\left(\cos \theta_{i, j k}\right)}\right) \tag{16}
\end{align*}
$$

where $\beta_{j k}^{i}=e^{\frac{1}{2}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \Delta \boldsymbol{\Sigma}_{t h}^{i}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)}$. Furthermore,

$$
\begin{equation*}
\beta_{j k}^{i}=\exp \left(\frac{1}{2} \boldsymbol{v}_{j k}^{i}{ }^{T} \boldsymbol{\Lambda}^{i} \boldsymbol{v}_{j k}^{i}\right)>1 \tag{17}
\end{equation*}
$$

where $\boldsymbol{V}^{i} \boldsymbol{\Lambda}^{i} \boldsymbol{V}^{i^{T}}=\Delta \boldsymbol{\Sigma}_{t h}^{i}$ and $\boldsymbol{v}_{j k}^{i}=\boldsymbol{V}^{i^{T}}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)$.

Proof of Eq. 16:

$$
\begin{align*}
L_{k}^{t} & =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \mathbb{E}_{\tilde{\boldsymbol{a}}_{i}^{t}}\left[-\log \frac{e^{\boldsymbol{w}_{k}^{T} \tilde{\boldsymbol{a}}_{i}^{t}+b_{k}}}{\sum_{j=1}^{K} e^{\boldsymbol{w}_{j}^{T} \tilde{\boldsymbol{a}}_{i}^{t}+b_{j}}}\right] \\
& =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \mathbb{E}_{\tilde{\boldsymbol{a}}_{i}^{t}}\left[\log \left(1+\sum_{j \neq k} e^{\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \tilde{\boldsymbol{a}}_{i}^{t}+\left(b_{j}-b_{k}\right)}\right)\right] \\
& \leq \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \left(1+\sum_{j \neq k} \mathbb{E}_{\tilde{\boldsymbol{a}}_{i}^{t}}\left[e^{\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \tilde{\boldsymbol{a}}_{i}^{t}+\left(b_{j}-b_{k}\right)}\right]\right) \tag{18}\\
& =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \left(1+\sum_{j \neq k} e^{\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \boldsymbol{a}_{i}^{t}+\left(b_{j}-b_{k}\right)+\frac{1}{2}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \Delta \boldsymbol{\Sigma}_{t h}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)}\right) \tag{19}\\
& =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \left(1+\sum_{j \neq k} e^{\frac{1}{2}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \Delta \boldsymbol{\Sigma}_{t h}^{i}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)} \cdot e^{\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \boldsymbol{a}_{i}^{t}+\left(b_{j}-b_{k}\right)}\right) \\
& =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \left(1+\sum_{j \neq k} \beta_{j k} e^{\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \boldsymbol{a}_{i}^{t}+\left(b_{j}-b_{k}\right)}\right) \\
& =\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \left(1+\sum_{j \neq k} \beta_{j k} e^{d_{i}\left\|\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right\|_{2} \cdot \operatorname{sign}\left(\cos \theta_{i, k j}\right)}\right) . \tag{20}
\end{align*}
$$

In the above derivation, the inequality Eq. 18 is a direct consequence of Jensen's inequality $\mathbb{E}[\log X] \leq \log \mathbb{E}[X]$. Eq. 19 is obtained by leveraging the moment-generating function $\mathbb{E}\left[e^{t X}\right]=e^{t \mu+\frac{1}{2} \sigma^{2} t^{2}}$ where $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, and the fact that ($\boldsymbol{w}_{j}-$ $\left.\boldsymbol{w}_{k}\right)^{T} \tilde{\boldsymbol{a}}_{i}^{t}+\left(b_{j}-b_{k}\right)$ is a Gaussian random variable drawn from $\mathcal{N}\left(\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \boldsymbol{a}_{i}^{t}+\left(b_{j}-b_{k}\right),\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \Delta \boldsymbol{\Sigma}_{t h}^{i}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)\right)$. Lastly, Eq. 20 is derived by incorporating Eq. 15.

Proof of Eq. 17: Performing SVD on the positive definite symmetric covariance matrix $\Delta \boldsymbol{\Sigma}_{t h}^{i}$, we obtain $\Delta \boldsymbol{\Sigma}_{t h}^{i}=$ $\boldsymbol{V}^{i} \boldsymbol{\Lambda}^{i} \boldsymbol{V}^{i}{ }^{T}$, where \boldsymbol{V}^{i} represents the eigenvectors and $\boldsymbol{\Lambda}^{i}$ is the diagonal matrix of eigenvalues. By incorporating $\boldsymbol{w}_{j}-\boldsymbol{w}_{k}$ and \boldsymbol{V}^{i} into a single term, we define $\boldsymbol{v}_{j k}^{i}=\boldsymbol{V}^{i}{ }^{T}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)$. On deriving $\beta_{j k}^{i}$, we get:

$$
\begin{aligned}
\beta_{j k}^{i} & =e^{\frac{1}{2}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \Delta \boldsymbol{\Sigma}_{t h}^{i}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)} \\
& =e^{\frac{1}{2}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)^{T} \boldsymbol{V}^{i} \boldsymbol{\Lambda}^{i} \boldsymbol{V}^{i T}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)} \\
& =e^{\frac{1}{2}\left(\boldsymbol{V}^{i T}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)\right)^{T} \boldsymbol{\Lambda}^{i}\left(\boldsymbol{V}^{i T}\left(\boldsymbol{w}_{j}-\boldsymbol{w}_{k}\right)\right)} \\
& =e^{\frac{1}{2} \boldsymbol{v}_{j k}^{i}{ }^{T} \boldsymbol{\Lambda}^{i} \boldsymbol{v}_{j k}^{i}}
\end{aligned}
$$

Let v_{c} be the $c^{\text {th }}$ element of $\boldsymbol{v}_{j k}^{i}$ and $\lambda_{c} \geq 0$ be the $c^{\text {th }} \operatorname{diag}\left(\boldsymbol{\Lambda}^{i}\right)$, we have:

$$
\beta_{j k}^{i}=e^{\frac{1}{2} \sum_{c} v_{c}^{2} \lambda_{c}}>e^{0} .
$$

For any non-zero vector \boldsymbol{w} and a positive definite matrix \boldsymbol{A}, the result $\boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{w}>0$ implies $\beta_{j k}^{i}>1$ due to the non-zero vector $\boldsymbol{w}_{j}-\boldsymbol{w}_{k}$ and positive definiteness of $\Delta \boldsymbol{\Sigma}_{t h}^{i}$. Furthermore, the relationship $\sum_{c} \lambda_{c}=\operatorname{trace}\left(\boldsymbol{\Lambda}^{i}\right)=\operatorname{trace}\left(\Delta \boldsymbol{\Sigma}_{t h}^{i}\right)$ indicates the larger the semantic similarities between the head and tail samples, and the more diverse the head class, the greater the value of $\beta_{j k}^{i}$.

A.4. Design of transformation matrix

We aim to design a transformation matrix such that the covariance of transformed tail feature \boldsymbol{F}_{t}, aligns closely with the covariance of head samples. The objective is formulated as:

$$
\begin{gather*}
\tilde{\boldsymbol{F}}_{t}^{*}=\underset{\tilde{\boldsymbol{F}}_{t}}{\arg \min }\left\|\tilde{\boldsymbol{F}}_{t}^{T} \tilde{\boldsymbol{F}}_{t}-\boldsymbol{F}_{h}^{T} \boldsymbol{F}_{h}\right\|_{F}^{2} \tag{21}\\
\text { s.t. } \quad \tilde{\boldsymbol{F}}_{t}=\boldsymbol{T} \boldsymbol{F}_{t} . \tag{22}
\end{gather*}
$$

Substituting the constraint from Eq. 22 into Eq. 21, we find optimality at:

$$
\begin{equation*}
\boldsymbol{F}_{t}^{T} \boldsymbol{T}^{T} \boldsymbol{T} \boldsymbol{F}_{t}=\boldsymbol{F}_{h}^{T} \boldsymbol{F}_{h} \tag{23}
\end{equation*}
$$

Upon applying singular value decomposition (SVD) to \boldsymbol{F}_{t} and \boldsymbol{F}_{h}, yielding $\boldsymbol{V}_{t} \boldsymbol{\Sigma}_{t} \boldsymbol{V}_{t}^{T}$ and $\boldsymbol{V}_{h} \boldsymbol{\Sigma}_{h} \boldsymbol{V}_{h}^{T}$ and insert them into Eq. 23, a solution set emerges:

$$
\begin{equation*}
\boldsymbol{T}=\left(\boldsymbol{V}_{h} \boldsymbol{\Sigma}_{h}^{\frac{1}{2}} \boldsymbol{V}_{h}^{T}\right) \boldsymbol{U}\left(\boldsymbol{V}_{t} \boldsymbol{\Sigma}_{t}^{-\frac{1}{2}} \boldsymbol{V}_{t}^{T}\right)^{T} \tag{24}
\end{equation*}
$$

where $\boldsymbol{U} \in \mathbb{R}^{C \times C}$ is a orthogonal group. Eq. 24 indicates that the transformation matrix, \boldsymbol{T}, is influenced by the covariance matrices of both tail and head classes. Empirical validation of this design is presented in Sec. 4.3.

[^0]: *Equal contribution. ${ }^{\dagger}$ Corresponding author.

