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A. Sketch Proofs in Section 3

A.1. Proof of Assumption 1

Assumption 1. Assume that after augmentation, the feature ãt
i passed to the classifier, which comes from a tail sample

xt
i, can be approximately represented by a distribution ãt

i ∼ N (at
i,∆Σi

th). Here, at
i is the feature obtained without

augmentation, and ∆Σi
th is a positive definite covariance matrix.

Proof: For a tail class kt, each unaugmented feature at
i comes from N (µt,Σt), where µt and Σt represent the mean and

covariance for class kt. The augmentation operation in Eq. 6 transforms the at into ãt, which follows N (µt,Σth), with
Σth being an approximation to the covariance matrix Σh (Referring to §A.4, the covariance of augmented tail samples will
be close to that of semantically similar head samples under the optimal transformation matrix.). For each i, there is always a
suitable matrix ∆Σi

th that ensures augmented features for class kt align closely with Σth or Σh. This alignment arises from
the synergy of the augmentation method and variations during training, effectively shaping at

i into ãt
i ∼ N (at

i,∆Σi
th).

Remark: Assumption 1 posits that under mild assumptions the augmentation naturally shifts at
i to ãt

i ∼ N (at
i,∆Σi

th).

A.2. Proof of Lemma 2

Lemma 2. Given the negative log softmax function, the loss Lk for samples of class k without augmentation can be derived
as:

Lk =
1

nk

nk∑
i=1

− log
ew

T
k ai+bk∑K

j=1 e
wT

j ai+bj

=
1

nk

nk∑
i=1

log

(
1 +

∑
j ̸=k

edi∥wj−wk∥2·sign(cos θi,jk)
)

(12)

Drawing upon [37], the decision boundary between class j and class k can be formulated as: (wj−wk)
Ta+(bj− bk) = 0.

di is the distance from point ai to the decision boundary, θi,jk denotes the angle between wj−wk and ai.
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Proof:

Lk =
1

nk

nk∑
i=1

− log
ew

T
k ai+bk∑K

j=1 e
wT

j ai+bj

=
1

nk

nk∑
i=1

log

∑K
j=1 e

wT
j ai+bj

ew
T
k ai+bk

=
1

nk

nk∑
i=1

log(1 +
∑
j ̸=k

e(wj−wk)
Tai+(bj−bk))

=
1

nk

nk∑
i=1

log(1 +
∑
j ̸=k

edi∥wj−wk∥2·sign(cos θi,jk)) (13)

To derive Eq. 13, let us inspect the geometric representation. Focus on the distance di from ai to the decision boundary
(wj−wk)

Ta+ (bj − bk) = 0:

di =
|(wj −wk)

Tai + (bj − bk)|
∥wj −wk∥2

(14)

For orientation, when ai and wk lie on the same side of the decision boundary, the sign of cosine of the angle between
(wj− wk) and ai is given by sign(cos θi,jk) = −1. In the opposite scenario, the sign would be positive. Integrating this
insight with Eq. 14, we deduce:

(wj −wk)
Tai + (bj − bk) = di∥wj −wk∥2 · sign(cos θi,jk) (15)

This directly gives rise to Eq. 13.

A.3. Proof of Theorem 1

Theorem 1. Assume Assumption 1 holds when using our augmentation. The loss function Lt
k for tail class k is:

Lt
k =

1

nk

nk∑
i=1

Eãt
i

[
− log

ew
T
k ãt

i+bk∑K
j=1 e

wT
j ãt

i+bj

]

≤ 1

nk

nk∑
i=1

log

(
1+

∑
j ̸=k

βi
jke

di∥wj−wk∥2·sign(cos θi,jk)
)

(16)

where βi
jk=e

1
2 (wj−wk)

T∆Σi
th(wj−wk). Furthermore,

βi
jk = exp

(1
2
vi
jk

T
Λivi

jk

)
> 1 (17)

where V iΛiV iT =∆Σi
th and vi

jk = V iT (wj −wk).



Proof of Eq. 16:

Lt
k =

1

nk

nk∑
i=1

Eãt
i
[− log

ew
T
k ãt

i+bk∑K
j=1 e

wT
j ãt

i+bj
]

=
1

nk

nk∑
i=1

Eãt
i
[log(1 +

∑
j ̸=k

e(wj−wk)
T ãt

i+(bj−bk))]

≤ 1

nk

nk∑
i=1

log(1 +
∑
j ̸=k

Eãt
i
[e(wj−wk)

T ãt
i+(bj−bk)]) (18)

=
1

nk

nk∑
i=1

log
(
1 +

∑
j ̸=k

e(wj−wk)
Tat

i+(bj−bk)+
1
2 (wj−wk)

T∆Σth(wj−wk)
)

(19)

=
1

nk

nk∑
i=1

log
(
1 +

∑
j ̸=k

e
1
2 (wj−wk)

T∆Σi
th(wj−wk) · e(wj−wk)

Tat
i+(bj−bk)

)
=

1

nk

nk∑
i=1

log
(
1 +

∑
j ̸=k

βjke
(wj−wk)

Tat
i+(bj−bk)

)
=

1

nk

nk∑
i=1

log
(
1+

∑
j ̸=k

βjke
di∥wj−wk∥2·sign(cos θi,kj)

)
. (20)

In the above derivation, the inequality Eq. 18 is a direct consequence of Jensen’s inequality E[logX] ≤ logE[X]. Eq. 19 is
obtained by leveraging the moment-generating function E[etX ] = etµ+

1
2σ

2t2 where X ∼ N (µ, σ2), and the fact that (wj −
wk)

T ãt
i+(bj−bk) is a Gaussian random variable drawn fromN

(
(wj−wk)

Tat
i+(bj−bk), (wj−wk)

T∆Σi
th(wj−wk)

)
.

Lastly, Eq. 20 is derived by incorporating Eq. 15.

Proof of Eq. 17: Performing SVD on the positive definite symmetric covariance matrix ∆Σi
th, we obtain ∆Σi

th =

V iΛiV iT , where V i represents the eigenvectors and Λi is the diagonal matrix of eigenvalues. By incorporating wj −wk

and V i into a single term, we define vi
jk = V iT (wj −wk). On deriving βi

jk, we get:

βi
jk = e

1
2 (wj−wk)

T∆Σi
th(wj−wk)

= e
1
2 (wj−wk)

TV iΛiV iT (wj−wk)

= e
1
2 (V

iT (wj−wk))
TΛi

(
V iT (wj−wk))

= e
1
2v

i
jk

T
Λivi

jk

Let vc be the cth element of vi
jk and λc ≥ 0 be the cth diag(Λi), we have:

βi
jk = e

1
2

∑
c v2

cλc > e0.

For any non-zero vector w and a positive definite matrix A, the result wTAw > 0 implies βi
jk > 1 due to the non-zero

vector wj − wk and positive definiteness of ∆Σi
th. Furthermore, the relationship

∑
c λc = trace(Λi) = trace(∆Σi

th)
indicates the larger the semantic similarities between the head and tail samples, and the more diverse the head class, the
greater the value of βi

jk.

A.4. Design of transformation matrix

We aim to design a transformation matrix such that the covariance of transformed tail feature Ft, aligns closely with the
covariance of head samples. The objective is formulated as:

F̃ ∗
t = argmin

F̃t

∥F̃ T
t F̃t − F T

h Fh∥2F (21)

s.t. F̃t = TFt. (22)



Substituting the constraint from Eq. 22 into Eq. 21, we find optimality at:

F T
t T TTFt = F T

h Fh. (23)

Upon applying singular value decomposition (SVD) to Ft and Fh, yielding VtΣtV
T
t and VhΣhV

T
h and insert them into Eq.

23, a solution set emerges:
T = (VhΣ

1
2

hV
T
h )U(VtΣ

− 1
2

t V T
t )T , (24)

where U ∈ RC×C is a orthogonal group. Eq. 24 indicates that the transformation matrix, T , is influenced by the covariance
matrices of both tail and head classes. Empirical validation of this design is presented in Sec. 4.3.


