Semantic Transfer from Head to Tail: Enlarging Tail Margin for Long-Tailed Visual Recognition (Supplementary Materials)

Shan Zhang ^{*,1}, Yao Ni^{*,1}, Jinhao Du², Yanxia Liu^{†,3}, Piotr Koniusz^{†,4,1} ¹Australian National University, ²Peking University, ³Beijing Union University, ⁴Data61♥CSIRO ¹firstname.lastname@anu.edu.au, ²dujinhao02@gmail.com, ³yanxia.liu@163.com

A. Sketch Proofs in Section 3

A.1. Proof of Assumption 1

Assumption 1. Assume that after augmentation, the feature \tilde{a}_i^t passed to the classifier, which comes from a tail sample x_i^t , can be approximately represented by a distribution $\tilde{a}_i^t \sim \mathcal{N}(a_i^t, \Delta \Sigma_{th}^i)$. Here, a_i^t is the feature obtained without augmentation, and $\Delta \Sigma_{th}^i$ is a positive definite covariance matrix.

Proof: For a tail class k_t , each unaugmented feature a_i^t comes from $\mathcal{N}(\mu_t, \Sigma_t)$, where μ_t and Σ_t represent the mean and covariance for class k_t . The augmentation operation in Eq. 6 transforms the a^t into \tilde{a}^t , which follows $\mathcal{N}(\mu_t, \Sigma_{th})$, with Σ_{th} being an approximation to the covariance matrix Σ_h (Referring to §A.4, the covariance of augmented tail samples will be close to that of semantically similar head samples under the optimal transformation matrix.). For each *i*, there is always a suitable matrix $\Delta \Sigma_{th}^i$ that ensures augmented features for class k_t align closely with Σ_{th} or Σ_h . This alignment arises from the synergy of the augmentation method and variations during training, effectively shaping a_i^t into $\tilde{a}_i^t \sim \mathcal{N}(a_i^t, \Delta \Sigma_{th}^i)$.

Remark: Assumption 1 posits that under mild assumptions the augmentation naturally shifts a_i^t to $\tilde{a}_i^t \sim \mathcal{N}(a_i^t, \Delta \Sigma_{th}^i)$.

A.2. Proof of Lemma 2

Lemma 2. Given the negative log softmax function, the loss L_k for samples of class k without augmentation can be derived as:

$$L_{k} = \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} -\log \frac{e^{\boldsymbol{w}_{k}^{T} \boldsymbol{a}_{i} + b_{k}}}{\sum_{j=1}^{K} e^{\boldsymbol{w}_{j}^{T} \boldsymbol{a}_{i} + b_{j}}}$$
$$= \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \left(1 + \sum_{j \neq k} e^{d_{i} \|\boldsymbol{w}_{j} - \boldsymbol{w}_{k}\|_{2} \cdot \operatorname{sign}(\cos \theta_{i,jk})} \right)$$
(12)

Drawing upon [37], the decision boundary between class j and class k can be formulated as: $(\mathbf{w}_j - \mathbf{w}_k)^T \mathbf{a} + (b_j - b_k) = 0$. d_i is the distance from point \mathbf{a}_i to the decision boundary, $\theta_{i,jk}$ denotes the angle between $\mathbf{w}_j - \mathbf{w}_k$ and \mathbf{a}_i .

^{*}Equal contribution. [†]Corresponding author.

Proof:

$$L_{k} = \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} -\log \frac{e^{\boldsymbol{w}_{k}^{T} \boldsymbol{a}_{i} + b_{k}}}{\sum_{j=1}^{K} e^{\boldsymbol{w}_{j}^{T} \boldsymbol{a}_{i} + b_{j}}}$$

$$= \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \frac{\sum_{j=1}^{K} e^{\boldsymbol{w}_{j}^{T} \boldsymbol{a}_{i} + b_{j}}}{e^{\boldsymbol{w}_{k}^{T} \boldsymbol{a}_{i} + b_{k}}}$$

$$= \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log(1 + \sum_{j \neq k} e^{(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})^{T} \boldsymbol{a}_{i} + (b_{j} - b_{k})})$$

$$= \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log(1 + \sum_{j \neq k} e^{d_{i} ||\boldsymbol{w}_{j} - \boldsymbol{w}_{k}||_{2} \cdot \operatorname{sign}(\cos \theta_{i, jk})})$$
(13)

To derive Eq. 13, let us inspect the geometric representation. Focus on the distance d_i from a_i to the decision boundary $(w_j - w_k)^T a + (b_j - b_k) = 0$:

$$d_{i} = \frac{|(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})^{T} \boldsymbol{a}_{i} + (b_{j} - b_{k})|}{\|\boldsymbol{w}_{j} - \boldsymbol{w}_{k}\|_{2}}$$
(14)

For orientation, when a_i and w_k lie on the same side of the decision boundary, the sign of cosine of the angle between $(w_j - w_k)$ and a_i is given by sign $(\cos \theta_{i,jk}) = -1$. In the opposite scenario, the sign would be positive. Integrating this insight with Eq. 14, we deduce:

$$(\boldsymbol{w}_j - \boldsymbol{w}_k)^T \boldsymbol{a}_i + (b_j - b_k) = d_i \|\boldsymbol{w}_j - \boldsymbol{w}_k\|_2 \cdot \operatorname{sign}(\cos \theta_{i,jk})$$
(15)

This directly gives rise to Eq. 13.

A.3. Proof of Theorem 1

Theorem 1. Assume Assumption 1 holds when using our augmentation. The loss function L_k^t for tail class k is:

$$L_{k}^{t} = \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \mathbb{E}_{\tilde{\boldsymbol{a}}_{i}^{t}} \left[-\log \frac{e^{\boldsymbol{w}_{k}^{T} \tilde{\boldsymbol{a}}_{i}^{t} + b_{k}}}{\sum_{j=1}^{K} e^{\boldsymbol{w}_{j}^{T} \tilde{\boldsymbol{a}}_{i}^{t} + b_{j}}} \right]$$
$$\leq \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log \left(1 + \sum_{j \neq k} \beta_{jk}^{i} e^{d_{i} \|\boldsymbol{w}_{j} - \boldsymbol{w}_{k}\|_{2} \cdot \operatorname{sign}(\cos \theta_{i,jk})} \right)$$
(16)

where $\beta_{jk}^i = e^{\frac{1}{2}(w_j - w_k)^T \Delta \Sigma_{th}^i (w_j - w_k)}$. Furthermore,

$$\beta_{jk}^{i} = \exp\left(\frac{1}{2}\boldsymbol{v}_{jk}^{i}{}^{T}\boldsymbol{\Lambda}^{i}\boldsymbol{v}_{jk}^{i}\right) > 1$$
(17)

where $V^i \Lambda^i V^{iT} = \Delta \Sigma_{th}^i$ and $v_{jk}^i = V^{iT} (w_j - w_k)$.

Proof of Eq. 16:

$$\begin{split} L_{k}^{t} &= \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \mathbb{E}_{\tilde{\mathbf{a}}_{i}^{t}} \left[-\log \frac{e^{\boldsymbol{w}_{k}^{T} \tilde{\mathbf{a}}_{i}^{t} + b_{k}}}{\sum_{j=1}^{K} e^{\boldsymbol{w}_{j}^{T} \tilde{\mathbf{a}}_{i}^{t} + b_{j}}} \right] \\ &= \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \mathbb{E}_{\tilde{\mathbf{a}}_{i}^{t}} \left[\log(1 + \sum_{j \neq k} e^{(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})^{T} \tilde{\mathbf{a}}_{i}^{t} + (b_{j} - b_{k})}) \right] \\ &\leq \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log(1 + \sum_{j \neq k} \mathbb{E}_{\tilde{\mathbf{a}}_{i}^{t}} \left[e^{(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})^{T} \tilde{\mathbf{a}}_{i}^{t} + (b_{j} - b_{k})} \right] \right) \\ &= \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log\left(1 + \sum_{j \neq k} e^{(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})^{T} \boldsymbol{a}_{i}^{t} + (b_{j} - b_{k}) + \frac{1}{2}(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})^{T} \Delta \boldsymbol{\Sigma}_{th}(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})} \right) \\ &= \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log\left(1 + \sum_{j \neq k} e^{\frac{1}{2}(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})^{T} \Delta \boldsymbol{\Sigma}_{th}^{i}(\boldsymbol{w}_{j} - \boldsymbol{w}_{k}) \cdot e^{(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})^{T} \boldsymbol{a}_{i}^{t} + (b_{j} - b_{k})} \right) \\ &= \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \log\left(1 + \sum_{j \neq k} e^{\frac{1}{2}(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})^{T} \boldsymbol{a}_{t}^{i} + (b_{j} - b_{k})} \right) \end{aligned}$$

$$= \frac{1}{n_k} \sum_{i=1}^{n_k} \log\left(1 + \sum_{j \neq k} \beta_{jk} e^{d_i \|\boldsymbol{w}_j - \boldsymbol{w}_k\|_2 \cdot \operatorname{sign}(\cos \theta_{i,kj})}\right).$$
(20)

In the above derivation, the inequality Eq. 18 is a direct consequence of Jensen's inequality $\mathbb{E}[\log X] \leq \log \mathbb{E}[X]$. Eq. 19 is obtained by leveraging the moment-generating function $\mathbb{E}[e^{tX}] = e^{t\mu + \frac{1}{2}\sigma^2 t^2}$ where $X \sim \mathcal{N}(\mu, \sigma^2)$, and the fact that $(w_j - w_k)^T \tilde{a}_i^t + (b_j - b_k)$ is a Gaussian random variable drawn from $\mathcal{N}((w_j - w_k)^T a_i^t + (b_j - b_k), (w_j - w_k)^T \Delta \Sigma_{th}^i (w_j - w_k))$. Lastly, Eq. 20 is derived by incorporating Eq. 15.

Proof of Eq. 17: Performing SVD on the positive definite symmetric covariance matrix $\Delta \Sigma_{th}^{i}$, we obtain $\Delta \Sigma_{th}^{i} = V^{i} \Lambda^{i} V^{i^{T}}$, where V^{i} represents the eigenvectors and Λ^{i} is the diagonal matrix of eigenvalues. By incorporating $w_{j} - w_{k}$ and V^{i} into a single term, we define $v_{jk}^{i} = V^{i^{T}}(w_{j} - w_{k})$. On deriving β_{jk}^{i} , we get:

$$\begin{aligned} p_{jk}^{i} &= e^{\frac{1}{2}(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})^{T}} \Delta \boldsymbol{\Sigma}_{th}^{i}(\boldsymbol{w}_{j} - \boldsymbol{w}_{k}) \\ &= e^{\frac{1}{2}(\boldsymbol{w}_{j} - \boldsymbol{w}_{k})^{T}} \boldsymbol{V}^{i} \boldsymbol{\Lambda}^{i} \boldsymbol{V}^{iT}(\boldsymbol{w}_{j} - \boldsymbol{w}_{k}) \\ &= e^{\frac{1}{2}(\boldsymbol{V}^{iT}(\boldsymbol{w}_{j} - \boldsymbol{w}_{k}))^{T}} \boldsymbol{\Lambda}^{i} \left(\boldsymbol{V}^{iT}(\boldsymbol{w}_{j} - \boldsymbol{w}_{k}) \right) \\ &= e^{\frac{1}{2}\boldsymbol{v}_{jk}^{i} T} \boldsymbol{\Lambda}^{i} \boldsymbol{v}_{jk}^{i} \end{aligned}$$

Let v_c be the c^{th} element of v_{ik}^i and $\lambda_c \ge 0$ be the $c^{\text{th}} \operatorname{diag}(\mathbf{\Lambda}^i)$, we have:

$$\beta_{ik}^i = e^{\frac{1}{2}\sum_c v_c^2 \lambda_c} > e^0$$

For any non-zero vector \boldsymbol{w} and a positive definite matrix \boldsymbol{A} , the result $\boldsymbol{w}^T \boldsymbol{A} \boldsymbol{w} > 0$ implies $\beta_{jk}^i > 1$ due to the non-zero vector $\boldsymbol{w}_j - \boldsymbol{w}_k$ and positive definiteness of $\Delta \Sigma_{th}^i$. Furthermore, the relationship $\sum_c \lambda_c = \text{trace}(\Lambda^i) = \text{trace}(\Delta \Sigma_{th}^i)$ indicates the larger the semantic similarities between the head and tail samples, and the more diverse the head class, the greater the value of β_{ik}^i .

A.4. Design of transformation matrix

We aim to design a transformation matrix such that the covariance of transformed tail feature F_t , aligns closely with the covariance of head samples. The objective is formulated as:

$$\tilde{\boldsymbol{F}}_{t}^{*} = \underset{\tilde{\boldsymbol{F}}_{t}}{\arg\min} \|\tilde{\boldsymbol{F}}_{t}^{T}\tilde{\boldsymbol{F}}_{t} - \boldsymbol{F}_{h}^{T}\boldsymbol{F}_{h}\|_{F}^{2}$$
(21)

$$s.t. \quad \tilde{F}_t = TF_t. \tag{22}$$

Substituting the constraint from Eq. 22 into Eq. 21, we find optimality at:

$$\boldsymbol{F}_t^T \boldsymbol{T}^T \boldsymbol{T} \boldsymbol{F}_t = \boldsymbol{F}_h^T \boldsymbol{F}_h.$$
⁽²³⁾

Upon applying singular value decomposition (SVD) to F_t and F_h , yielding $V_t \Sigma_t V_t^T$ and $V_h \Sigma_h V_h^T$ and insert them into Eq. 23, a solution set emerges:

$$\boldsymbol{T} = (\boldsymbol{V}_h \boldsymbol{\Sigma}_h^{\frac{1}{2}} \boldsymbol{V}_h^T) \boldsymbol{U} (\boldsymbol{V}_t \boldsymbol{\Sigma}_t^{-\frac{1}{2}} \boldsymbol{V}_t^T)^T,$$
(24)

where $U \in \mathbb{R}^{C \times C}$ is a orthogonal group. Eq. 24 indicates that the transformation matrix, T, is influenced by the covariance matrices of both tail and head classes. Empirical validation of this design is presented in Sec. 4.3.