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A. Additional Experiment Results

We present additional qualitative results in Figure 1 and
Figure 2 to supplement the main paper. The results demon-
strate that IIR-Net can modify image content base on user
prompts while preserving the text-irrelevant content of the
original image. In Figure 1, we observe that IIR-Net suc-
cessfully preserves shape-related information of the target
object in texture editing examples (e.g., “A wood airplane”
and “A woman skiing on grassland”), as well as texture-
related information in color editing examples (e.g., “A red
horse.” and “A green orange”). In contrast, Imagic [2] may
modify the shape information, while ControlNet [3] may
modify the texture information. Besides, we observe that
our network produces visually more natural images com-
pared to Text2LIVE [1]. E.g., in the example of “A red
horse,” Text2LIVE applies some red effects to the horse,
whereas our method directly produces “a red horse” with
better consistency to the background. These observations
are consistent with our conclusions in the main paper.

B. User study Interface

In our user study experiments, annotators were presented
with an input image, a target text, and four edited images
generated by different methods. They were asked to eval-
uate the accuracy of manipulated images according to two
aspects: (1) the alignment of the image with the target text,
and (2) the preservation of text-irrelevant content from orig-
inal images. We provide a sample screenshoot in Figure 3.
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Figure 1. Additional comparison results between IIR-Net and the baselines on the COCO dataset. We set the image resolution to 512×512.
We observe that our method effectively modifies the input image while preserving the text-irrelevant content. For instance, in the example
of “A tennis player in blue shirt,” IIR-Net retains both the shape and texture attributes of the original shirt, whereas the other baselines
either introduce limited visual effects or modify text-irrelevant content such as textures or shape. See Appendix A for further discussion.
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Figure 2. Additional comparison results between IIR-Net and baselines on the COCO dataset. We set the image resolution to 512×512.
See Appendix A for discussion.



Figure 3. User study screenshot. A sample screenshot illustrating one of the questions presented to participants in our user study. See
Appendix B for discussion.


