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A. Implementation Details
A.1. Training Details

We implemented the proposed WalkFormer by PyTorch.
We set the number of neighbours K in K-NN to 20 for Point
Selector and K = 8 for Route Transformer. Adam [1] op-
timizer is used with β1 = 0.9 and β2 = 0.999 and set the
initial learning rate to 10−3. We train the model end-to-
end on a single NVIDIA RTX 3090 GPU. For the Comple-
tion3D dataset, the input and output number of points are
both 2048. We set the batch size to 48 and train the model
for 200 epochs with the continuous learning rate decay of
0.8 for every 20 epochs. For the PCN dataset, our model
takes 2048 points as input and completes a point cloud with
2048 points eight times, resulting in a final output of 16384
points. We set the batch size to 32 and train the model for
300 epochs with the continuous learning rate decay of 0.9
for every 30 epochs.

A.2. Encoder Details

We stack several set abstraction and feature propaga-
tion layers [2] with point transformer blocks [8] to extract
features. We use farthest point sampling (FPS) to hierar-
chically down-sample the point cloud in each layer of the
set abstraction. We list the detailed encoder architecture in
Figure 1, where the number of input and output points are
both N = 2048, the feature dimension is C = 3 and 128,
respectively.

B. More Experiment Results
B.1. Searching Radius

We provide more ablation experiments on the Com-
pletion3D dataset. The searching radius [3] determines
the maximum distance that points can be moved during
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Figure 1. Detailed architecture of the Encoder.

each deformation step. Table 1 evaluates the effective-
ness of different searching radii, indicating that the baseline
([1.0, 1.0, 0.1, 0.1, 0.01]) surpasses other variations when
employing this fixed decreasing ratio.

Table 1. The effect of searching radius on Completion3D dataset.

Searching Radius CD-Avg EMD-Avg

[1.0, 1.0, 1.0, 1.0, 1.0] 6.94 3.01
[1.0, 1.0, 0.5, 0.5, 0.25] 6.68 2.83
[1.0, 1.0, 0.1, 0.1, 0.01] 6.59 2.75
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B.2. Deformation Step

By gradually decreasing the searching radius, our model
exhibits a coarse-to-fine completion process. We further
conduct experiments on the effectiveness of the deforma-
tion step. The quantitative results in Table 2 prove that our
method benefits from the increasing number of steps, which
successfully refines the point clouds throughout the defor-
mation. However, the improvement is also limited by infor-
mation redundancy with more than 5 steps.

Table 2. The effect of deformation step on Completion3D dataset.

Step Searching Radius CD-Avg EMD-Avg

3 [1.0, 0.1, 0.01] 7.42 3.10
4 [1.0, 1.0, 0.1, 0.01] 6.84 2.89
5 [1.0, 1.0, 0.1, 0.1, 0.01] 6.59 2.75
6 [1.0, 1.0, 0.1, 0.1, 0.01, 0.01] 6.67 2.78

B.3. Complexity Analysis

We list the complexity analysis of our WalkFormer with
other methods in Table 3. We report the number of parame-
ters (Params) and theoretical computation cost (FLOPs) for
space and time complexity. Despite involving multiple steps
in the completion process, our method has relatively low
Params and FLOPs among the methods in the table. We
provide two versions of the WalkFormer, one complete ver-
sion (step=5) yields the lowest EMD, and another version
(step=4) outperforms most methods with reduced computa-
tional demands. This strikes a balance between the over-
head and performance.

Table 3. The space and time complexity analysis on PCN dataset in
terms of the number of parameters (Params) and theoretical com-
putational cost (FLOPs).

Methods Params FLOPs CD-Avg EMD-Avg

PCN [7] 6.84M 14.69G 9.64 2.99
GRNet [6] 76.71M 25.88G 8.83 2.83

PMP-Net++ [4] 5.92M 4.61G 7.56 2.42
Snowflake [5] 19.32M 10.32G 7.21 2.20

SeedFormer [9] 3.20M 29.61G 6.74 2.14

WalkFormer (step=4) 7.32M 10.01G 6.97 2.18
WalkFormer (step=5) 9.21M 12.89G 6.79 2.12

C. More Visualization Results

We provide additional completion results on the PCN
dataset, as depicted in Figure 2. Qualitative comparison
with PCN [7], PMP-Net++ [4], and SeedFormer [9], shows
the better visual performance of our method.
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Figure 2. Visual comparison of point cloud completion results on the PCN dataset.
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