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1. Architecture Details

The detailed specifications of our proposed network ar-

chitecture for implementation are shown in Tab. 1. We also

specify the input and output size of each block and layer.

Here MLP 3 32 means channel MLP block with 3 input and

32 output channels respectively. MAB denotes multi-axis

gated MLP block [23], and RMAB is our proposed residual

MLP attention block.

Stage Input size Output size Layers/Blocks

1 2562 × 3 2562 × 32
{

MLP 3 32

ReLU

1 2562 × 32 2562 × 32
{

MAB

RMAB

1 2562 × 32 1282 × 32 Pooling

2 1282 × 32 1282 × 64
{

MLP 32 64

ReLU

2 1282 × 64 1282 × 64
{

MAB

RMAB

2 1282 × 64 642 × 64 Pooling

3 642 × 64 642 × 128
{

MLP 64 128

ReLU

3 642 × 128 642 × 128
{

MAB

RMAB

3 642 × 128 322 × 128 Pooling

4 322 × 128 322 × 256
{

MLP 128 256

ReLU

5 322 × 256 322 × 64
{

MLP 256 64

BatchNorm

6 322 × 64 2562 × 1
{

Channel-wise softmax

Reshape

Table 1. Detailed architecture specifications of BALF frame-

work. Stage 1-3 denote MLP-based encoder, while stage 4-6 cor-

respond detection module in our proposed BALF framework.

2. Additional Ablation Study

Number of MLPCoder block. Towards understanding the

BALF framework, we scaled up our architecture in terms

of the number of MLPCoder. Tab. 2 suggests that using

more than three MLPCoder blocks does not significantly

improve the detection performance, but increases the num-

ber of parameters and computational cost. We thus use 3

MLPCoder blocks in our experiments to yield the perfor-

mance and complexity tradeoff.

Num. MLPCoder block Repeatability ↑ Params ↓ Inference time ↓

1 63.60% 23K 6.89ms

2 66.82% 111K 12.54ms

3 75.15% 381K 29.02ms

4 78.27% 1396K 112.20ms

Table 2. Number of MLPCoder block. The inference time here

is the runtime of keypoint extraction at a VGA resolution image

(i.e. 480×640 pixels).

Different architectures. We also re-train some classi-

cal architectures like ResNet-18 [7], VGG-16 [21], and U-

Net [18] with the proposed detection module and loss func-

tion. Tab. 3 presents the performance of different archi-

tectures. Since the memory required by ViT [5] exceeds

NVIDIA Geforce 2080 Ti, we did not re-train ViT in this

ablation. The results demonstrate that our proposed MLP-

based encoder achieves superior repeatability performance

compared to these classical architectures.

Variant Repeatability ↑ Params ↓ Inference time ↓

ResNet-18 [7] 67.90% 746K 55.12ms

VGG-16 [21] 68.52% 338K 5.25ms

U-Net [18] 67.90% 315K 3.10ms

MLP-based encoder (proposed) 75.15% 381K 29.02ms

Table 3. Different architectures. The performance of different

network architectures on the GoPro testing dataset.

3. Complete Quantitative Results

Due to limited space in the main paper, we only present

the total repeatability performance in the evaluations with
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blur and deblur data. We thus show the complete quantita-

tive evaluation results here.

Evaluation with the Blur-HPatches dataset. Tabs. 4

and 5 present the average repeatability score on the view-

point changes, illumination changes and all image se-

quences together with three varying levels of motion blur

under blur-to-sharp and blur-to-blur configurations respec-

tively.

Evaluation with the Blur-HPatches dataset prepro-

cessed by deblurring network. Tabs. 6 to 9 present the

complete repeatability results among all other methods on

deblurred images and ours on corresponding blurred im-

ages.

4. More Qualitative Results

Detection. Figs. 1 and 2 present detection qualitative re-

sults on blurred images from RWBI dataset [25], which are

captured by real cameras. It demonstrates that our network

cannot only detect well distributed salient keypoints from

sharp images, but also being able to detect well localized

keypoints from bluured images.

Matching. To further demonstrate the performance of our

method on the real blurred images, we randomly select a

paired sharp and blurred images, and another sharp image

(with viewpoint changes) from RealBlur dataset [17] for

feature matching evaluation. Specifically, we first run our

detector on the paired sharp and blurred images, and extract

the correspondences between them by a pre-defined range,

such as those within a circle. We then compute the cor-

respondences between those two sharp images (with view-

point changes), using HardNet descriptor [13] and FLANN

[14] matching. Finally, we can establish the correspon-

dences between the blurred and the second sharp images via

the above two sets of correspondences. Fig. 3 demonstrates

that our method can detect well localized and repeatable

keypoints from both sharp and blurred images for further

image matching.
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EASY HARD TOUGH

Mehotd Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑

SIFT [10] 50.64 61.39 55.92 51.55 62.23 56.80 47.36 59.83 53.49

SURF [3] 55.77 62.09 58.88 50.98 61.66 56.23 49.36 63.37 56.24

Harris-Laplace [12] 16.17 57.65 36.70 17.46 58.77 37.97 18.43 51.70 34.98

Shi-Tomasi [20] 57.33 57.33 57.33 55.18 55.05 55.11 48.13 50.12 49.11

MSER [11] 43.27 45.15 44.19 40.43 43.57 41.97 34.56 39.62 37.05

KAZE [1] 46.76 53.15 49.90 43.30 50.48 46.84 34.64 45.47 39.98

AKAZE [2] 46.57 62.00 54.15 42.46 58.94 50.51 33.64 57.90 45.49

FAST [19] 60.89 63.10 61.98 61.01 62.56 61.77 47.93 54.93 51.37

LIFT [24] 46.47 55.06 50.69 45.71 54.78 50.17 42.13 52.02 46.99

Key.Net [9] 58.02 62.74 60.34 50.54 59.02 54.71 39.20 50.38 44.69

SuperPoint [4] 66.06 65.21 65.64 61.96 62.49 62.22 51.60 54.13 52.84

LF-Net [15] 59.57 67.65 63.54 57.64 64.87 61.19 52.14 61.57 56.78

D2-Net [6] 44.30 55.31 49.71 41.60 53.19 47.30 38.39 50.47 44.32

R2D2 [16] 55.10 60.99 57.99 47.37 56.25 51.73 33.46 47.92 40.57

BALF (ours) 72.58 75.74 74.12 72.93 76.07 74.45 67.26 76.54 71.84

Table 4. Repeatability results (%) on Blur-HPatches dataset under blur-to-sharp configuration. Our method achieves best perfor-

mance compared to prior works on the viewpoint changes, illumination changes, and all image sequences together with three varying levels

of motion blur.

EASY HARD TOUGH

Method Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑

SIFT [10] 56.67 57.31 56.99 53.15 53.85 53.49 46.23 46.63 45.94

SURF [3] 58.46 63.80 61.08 55.61 60.55 58.04 49.92 57.41 53.60

Harris-Laplace [12] 17.09 54.82 35.76 15.08 29.06 31.95 11.44 43.79 27.47

Shi-Tomasi [20] 58.16 54.35 56.29 54.72 52.73 53.75 51.61 51.13 51.37

MSER [11] 41.11 42.53 41.81 37.21 39.30 38.24 32.63 36.61 34.59

KAZE [1] 63.31 63.27 63.29 58.66 58.76 58.71 45.94 47.88 46.90

AKAZE [2] 61.81 68.63 65.16 59.28 65.24 62.20 48.22 55.06 51.54

FAST [19] 57.81 57.87 57.84 52.70 54.03 53.35 49.70 52.62 51.17

LIFT [24] 46.08 50.69 48.34 43.74 49.51 46.57 42.87 50.31 46.53

Key.Net [9] 61.81 63.77 62.77 56.82 59.57 58.17 45.68 52.94 49.25

SuperPoint [4] 58.01 59.22 58.60 49.69 50.37 50.03 42.34 44.25 43.28

LF-Net [15] 52.45 68.74 60.45 51.20 67.21 59.07 49.68 66.02 57.71

D2-Net [6] 46.65 57.14 51.80 45.84 56.44 51.05 45.11 56.13 50.53

R2D2 [16] 54.10 61.00 57.49 51.87 58.87 55.31 40.88 53.05 46.86

BALF (ours) 69.44 71.56 70.48 67.13 70.22 68.43 65.90 69.60 67.71

Table 5. Repeatability results (%) on Blur-HPatches dataset under blur-to-blur configuration. Our method also achieves best per-

formance compared to prior works on the viewpoint changes, illumination changes, and all image sequences together with three varying

levels of motion blur.
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EASY HARD TOUGH

Method Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑

SIFT [10] 53.98 59.35 56.62 52.44 58.38 55.36 47.95 59.92 53.83

SURF [3] 60.84 62.99 61.89 57.39 60.92 59.13 49.89 60.04 54.88

Harris-Laplace [12] 14.74 19.62 17.15 14.89 18.89 16.87 17.95 23.17 20.54

Shi-Tomasi [20] 61.05 60.05 60.56 57.12 56.61 56.87 47.63 49.96 48.78

MSER [11] 46.74 46.55 46.65 42.67 43.80 43.23 35.95 39.92 37.90

KAZE [1] 65.37 64.90 65.14 62.55 63.67 63.10 56.73 63.71 60.16

AKAZE [2] 63.21 68.94 66.03 60.39 67.77 64.02 53.45 68.14 60.64

FAST [19] 60.96 62.62 61.77 58.61 60.75 59.67 58.67 64.61 61.60

LIFT [24] 52.12 57.93 54.98 49.16 56.25 52.64 41.75 51.93 46.75

Key.Net [9] 62.86 63.72 63.28 56.37 59.71 58.01 42.08 52.30 47.10

SuperPoint [4] 68.65 66.76 67.72 65.33 62.73 64.05 54.18 56.37 55.26

LF-Net [15] 54.40 70.31 62.22 52.52 67.53 59.90 47.77 61.93 54.73

D2-Net [6] 46.72 57.08 51.81 44.30 54.87 49.49 40.00 52.07 45.94

R2D2 [16] 58.36 62.31 60.31 52.58 58.38 55.43 37.40 49.32 43.26

BALF (ours) 72.58 75.74 74.12 72.93 76.07 74.45 67.26 76.54 71.84

Table 6. Repeatability results (%) on deblurred images from SRN-DeblurNet [22] under deblur-to-sharp configuration. The bottom

row shows the results of our method on the corresponding blurred images.

EASY HARD TOUGH

Method Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑

SIFT [10] 60.31 59.16 59.75 57.98 58.27 58.13 48.56 52.78 50.63

SURF [3] 61.33 63.58 62.44 59.84 62.74 61.26 51.76 58.90 55.27

Harris-Laplace [12] 14.88 59.55 36.98 15.22 56.66 35.73 16.37 48.31 32.23

Shi-Tomasi [20] 66.13 60.13 63.18 63.75 58.78 61.03 51.13 50.63 50.88

MSER [11] 48.52 46.85 47.70 46.11 44.66 45.40 36.33 38.70 37.49

KAZE [1] 64.87 63.51 64.20 62.78 62.12 62.45 51.57 55.31 53.41

AKAZE [2] 63.35 68.15 65.71 61.30 66.96 64.08 51.55 60.85 56.10

FAST [19] 63.74 61.67 62.72 61.86 60.40 61.14 49.11 52.16 50.61

LIFT [24] 53.88 57.95 55.88 52.12 55.22 53.64 42.85 47.87 45.31

Key.Net [9] 62.71 63.01 62.86 59.69 61.22 60.44 46.57 55.06 50.74

SuperPoint [4] 67.77 64.93 66.38 64.61 61.67 63.16 49.04 50.02 49.52

LF-Net [15] 55.36 71.03 63.06 54.60 69.72 62.03 49.17 65.68 57.28

D2-Net [6] 49.05 58.32 53.60 48.58 57.57 53.00 45.70 56.33 50.93

R2D2 [16] 55.71 60.60 58.11 52.30 57.38 54.80 40.83 50.88 45.77

BALF (ours) 69.44 71.56 70.48 67.13 70.22 68.43 65.90 69.60 67.71

Table 7. Repeatability results (%) on deblurred images from SRN-DeblurNet [22] under deblur-to-deblur configuration. The bottom

row shows the results of our method on the corresponding blurred images.



EASY HARD TOUGH

Method Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑

SIFT [10] 56.28 59.03 57.63 54.02 59.10 56.52 51.29 61.88 56.50

SURF [3] 60.98 62.99 61.97 57.28 61.93 59.57 51.48 61.38 56.34

Harris-Laplace [12] 14.08 19.35 16.69 14.75 19.10 16.90 17.84 22.69 20.24

Shi-Tomasi [20] 62.98 60.50 61.75 59.32 58.88 59.10 51.29 51.83 51.56

MSER [11] 47.98 47.25 47.62 44.90 45.40 45.14 40.12 41.30 40.70

KAZE [1] 65.42 65.04 65.23 62.27 64.12 63.18 58.62 64.27 61.41

AKAZE [2] 63.63 69.04 66.29 60.44 68.72 64.50 56.07 69.65 62.72

FAST [19] 61.89 62.12 62.00 59.41 61.51 60.44 57.01 60.53 58.74

LIFT [24] 54.88 58.37 56.59 50.94 56.24 53.54 45.60 52.70 49.09

Key.Net [9] 63.78 64.20 63.99 57.46 60.91 59.16 44.92 53.92 49.35

SuperPoint [4] 68.85 67.02 67.95 66.83 64.84 65.86 57.37 59.10 58.22

LF-Net [15] 55.01 70.43 62.59 53.03 67.70 60.24 47.73 62.14 54.81

D2-Net [6] 47.68 57.77 52.64 44.96 55.64 50.21 40.17 51.80 45.88

R2D2 [16] 58.60 62.38 60.46 52.72 58.74 55.68 40.55 50.38 45.38

BALF (ours) 72.58 75.74 74.12 72.93 76.07 74.45 67.26 76.54 71.84

Table 8. Repeatability results (%) on deblurred images from DeblurGAN-v2 [8] under deblur-to-sharp configuration. The bottom

row shows the results of our method on the corresponding blurred images.

EASY HARD TOUGH

Method Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑ Viewpoint ↑ Illumination ↑ Total ↑

SIFT [10] 59.17 59.73 59.44 57.33 58.66 57.98 50.12 52.33 51.21

SURF [3] 60.57 63.63 62.07 58.95 62.74 60.81 51.82 58.47 55.09

Harris-Laplace [12] 14.49 60.16 37.09 14.73 57.67 35.97 15.02 48.35 31.54

Shi-Tomasi [20] 66.02 61.05 63.58 64.08 59.62 61.89 54.59 52.90 53.76

MSER [11] 48.43 47.23 47.84 45.93 45.18 45.56 37.45 38.59 38.01

KAZE [1] 64.77 63.47 64.13 61.92 61.82 61.87 52.93 55.48 54.19

AKAZE [2] 63.62 67.94 65.75 61.03 66.57 63.75 53.93 60.90 57.35

FAST [19] 63.86 62.92 63.40 62.16 61.23 61.70 54.60 56.30 55.43

LIFT [24] 54.44 58.99 56.68 53.01 57.70 55.31 46.95 54.05 50.44

Key.Net [9] 62.38 63.08 62.73 59.39 61.81 60.58 49.12 56.93 52.96

SuperPoint [4] 67.49 65.49 66.50 64.89 62.48 63.71 51.85 52.35 52.09

LF-Net [15] 55.57 70.69 63.00 54.58 69.25 61.79 50.48 65.49 57.85

D2-Net [6] 49.40 58.62 53.93 48.65 58.08 53.29 45.69 55.97 50.74

R2D2 [16] 55.66 60.33 57.95 52.31 57.84 55.03 43.12 52.76 47.86

BALF (ours) 69.44 71.56 70.48 67.13 70.22 68.43 65.90 69.60 67.71

Table 9. Repeatability results (%) on deblurred images from DeblurGAN-v2 [8] under deblur-to-deblur configuration. The bottom

row shows the results of our method on the corresponding blurred images.



Input SIFT [10] SURF [3] Harris-Laplace [12]

Shi-Tomasi [20] MSER [11] KAZE [1] AKAZE [2]

FAST [19] LIFT [24] Key.Net [9] SuperPoint [4]

LF-Net [15] D2-Net [6] R2D2 [16] BALF (ours)

Figure 1. Qualitative results for keypoint detection on RWBI dataset [25]. Our method generates more accurate and consistent

keypoints. Best viewd in high resolution.



Input SIFT [10] SURF [3] Harris-Laplace [12]

Shi-Tomasi [20] MSER [11] KAZE [1] AKAZE [2]

FAST [19] LIFT [24] Key.Net [9] SuperPoint [4]

LF-Net [15] D2-Net [6] R2D2 [16] BALF (ours)

Figure 2. Qualitative results for keypoint detection on RWBI dataset [25]. Our method generates more accurate and consistent

keypoints. Best viewd in high resolution.



Figure 3. Qualitative results for keypoint detection and matching on RealBlur dataset [17]. Left Sharp image. Right Blurred image.

Our network is able to detect well distributed and localized keypoints from both sharp and blurred images for further image matching. Best

viewd in high resolution.


