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Abstract

This supplementary file provides a detailed explanation
of the full objective, implementation details, subjective test,
and additional visual comparison results of SemST.

1. Full Objective

The objective of image-to-image (I2I) translation is to
learn a mapping from a source domain to a target domain,
enabling the input images X in the source domain to be
transferred to the target domain. This can be achieved
by aligning the distribution between the domain of output
translated images and the target domain. The standard ad-
versarial loss implements this alignment:

LGAN (G,D,X, Y ) = Ey∼Y logD(y)+Ex∼X log(1−D(ŷ)),
(1)

where y denotes images from the target domain, ŷ = G(x)
refers to the translated images, while G and D symbolize
the generator and discriminator, respectively.

However, aligning the distribution may lead to seman-
tic distortions. To address this, our proposed method,
SemST, incorporates two loss functions: the proposed
texture-structure consistency constraint (TS loss) and the
semantics-aided decoupled InfoNCE (hDCE) loss. Utiliz-
ing these loss functions ensures the semantic consistency
between the input and output images, implying that the con-
tent of the images remains unaltered.

SemST employs a multi-scale framework with two
branches to learn global large-scale embeddings and local
small-scale embeddings, respectively. Since the purpose of
both the hDCE loss LhDCE and the TS loss LTS is to im-
prove the correlation between the input and output, and a
mixture of embeddings at different scales results in inac-
curacies in the computation of their correlation, these loss
functions are applied separately in local and global embed-

dings:

LTS = Lg
Ts + Ll

Ts, (2)
LhDCE = Lg

hDCE + Ll
hDCE , (3)

where superscripts g and l indicate whether the loss func-
tion is computed in global or local embeddings, respec-
tively. LhDCE and LTS are the final hDCE loss and TS
loss, respectively.

In summary, by integrating the loss functions that ac-
count for both semantics and distribution alignment, the full
objective function for our SemST approach takes the form:

Lfull = λTSLTS + λhDCELhDCE + λGANLGAN , (4)

where λTS , λhDCE and λGAN represent the weights of dif-
ferent loss functions, respectively.

2. Implementation Details
Our codes are based on the source code of SRC [4] and

SCC [2]. Detailed implementations are explained in this
section.

2.1. Network Architecture

2.1.1 Generator Archtecture

The generator, Genc−dec, contains one block with a 7 × 7
Convolution-InstanceNorm-ReLU structure and stride
1, two downsampling blocks with a 3 × 3 Convolution-
InstanceNorm-ReLU structure and stride 2, nine residual
blocks with a residual connected 3 × 3 Convolution-
InstanceNorm-ReLU-Convolution-Normalization struc-
ture, two upsampling blocks with a Deconvolution-
InstanceNorm-ReLU structure and stride 2, and finally,
one block with a 7 × 7 Convolution-InstanceNorm-ReLU
structure and stride 1 [6]. The first half of the generator is
the encoder Genc and the remainder is the decoder Gdec.
The global and local crop prediction branches share the
same generator structure, but their weights differ and are
represented by Gg

enc−dec and Gl
enc−dec, respectively.
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2.1.2 Fully Connected Layers Archtecture

We employ Genc to both input and output images to extract
features from different layers. Specifically, we extract fea-
tures from the 0th, 4th, 8th, 12th, and 16th layers, which
correspond to receptive fields of sizes 1× 1, 9× 9, 15× 15,
35 × 35, and 99 × 99. Following CUT [5], we randomly
sample 256 locations and apply a 2-layer MLP F to these
features to generate a shared 256-dimensional embedding
space between input and output images. The TS and hDCE
losses are applied to this shared embedding space to con-
strain the semantics between input and output. Similar to
the generator, the global and local crop prediction branches
share the same structure but have different weights, repre-
sented by Fg and Fl, respectively.

2.1.3 Scale Attention Archtecture

The scale attention is applied to the embedding space ob-
tained by Gg

enc. We utilize Atrous Spatial Pyramid Pooling
(ASPP) [1] to learn the scale map, Ms, composed of one
block of a 1 × 1 AdaptivePool-Convolution structure with
stride 1, four 4 × 4 convolutional layers with dilations of
1, 6, 12, and 18, and a convolutional layer with stride 3
applied on the concatenated features from all convolutional
layers resized to the same resolution. Finally, the features
are input into a convolutional layer to predict a scale map
with one channel and size equal to the resized global crops
hg . By utilizing ASPP to predict the scale map on global
predictions, scale maps can learn from different scales and
assist in deciding which region should rely more on local or
global predictions.

2.1.4 Discriminator Archtecture

We utilize the 70 × 70 PatchGAN [3], which classifies
whether each 70 × 70 patch is real or fake and averages
all results as the output of the discriminator. PatchGAN
comprises one block with a 4× 4 Convolution-LeakyReLU
structure and stride 2, three blocks with a 4×4 Convolution-
InstanceNorm-LeakyReLU and stride 2, and finally, one
convolutional layer.

2.1.5 Training Paramters

In our experiments, we set the global crop size at hg = 512
and the local crop size at hl = 256. Both the global and
local crops are extracted from resized input images to cover
the full scale of input images. The batch size is fixed at
1. We employ the Adam optimizer with exponential decay
rates set for the first-moment estimates β1 = 0.5 and the
second-moment estimates β2 = 0.999. The learning rate is
initiated from 0.0002.

3. Subjective Test
To further demonstrate the superior performance of our

method in comparison to 6 benchmarking methods. We
conducted a subjective assessment involving 30 partici-
pants. In this study, we presented participants with 12 sets
of blind A/B tests, including the results generated by our
method and prior works. Each of the benchmarking meth-
ods appears twice within our testing. The result of this
subjective test is shown in Figure 1, unveiling a preference
range of 83% to 100% among users favoring our method
over the other benchmarking methods.

4. Additional Results
We present further visual results comparing various

methods: Cityscapes Parsings → Images (Figure 2), Sum-
mer → Winter (Figure 3), Horse → Zebra (Figure 4),
and Domain Adaptation of GTA → Cityscapes (Figure 5).
These comparisons clearly demonstrate the prominent im-
provements of SemST over other methods.
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Figure 1. User study results: we show the user’s preference in pair-wise comparisons between our method and six benchmarking methods.
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Figure 2. A visual comparison of images refined by our SemST method and other benchmarking methods on Cityscapes Parsings →
Images. As highlighted by bounding boxes, other methods exhibit artifacts and semantic distortions, while our results effectively mitigate
these issues, resulting in higher-quality images
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Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings
of the IEEE international conference on computer vi-
sion, pages 2223–2232, 2017. 1
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Figure 3. A visual comparison of images refined by our SemST method versus other benchmarking methods on summer → winter. Our
results realistically render buildings, leaves, and mountains with snow, and provide more natural colors. The artifacts, highlighted by
bounding boxes, are effectively reduced by our SemST approach.
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Figure 4. A visual comparison of images refined by our SemST method versus other benchmarking methods on horse → zebra. We
generate better or comparable results. certain artifacts, such as the brown color on zebras and object shape distortion, are highlighted by
bounding boxes in results generated by other methods. However, these issues are effectively mitigated in our approach.
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Figure 5. A visual comparison of the results of domain adaptation on GTA5 → Cityscapes using benchmarking methods and those
methods trained in combination with SemST-refined images. As shown in the bounding boxes, our SemST corrects wrongly classified
objects, accurately predicts finer details (e.g. street lamps), and rectifies region labels.
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