Lightweight Portrait Matting via Regional Attention and Refinement
Supplementary Material

1. Training Losses

The low resolution network is trained with binary cross
entropy for the coarse alpha &. and focal loss [7] for the
trimap 7, (one-hot encoded):
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where o, and 7, are the downsampled ground truth alpha
and trimap; ¢ is the trimap class index; p; measures how
close the prediction 7, is to the ground truth 7, and (1 —
pi)? in the focal loss is designed to weigh down the well

predicted samples; w; is a weight to handle class imbalance.
—0.5

# for class i with n; pixels.
In addition to computing L4, and £;, at Rg (the output

low resolution), we also add two output heads at $R14 and
MR32 and compute the losses accordingly. The two added
output heads are discarded during inference.

The full resolution alpha & from the refinement network
is trained with alpha loss and Laplacian loss [4,6]:

Empirically we set w; =

Ls=+(a—a)P+e, “4)

Lip =Y V(Prla) =Pr(@)2+ 2, (5

where P,.(-) creates a Laplacian pyramid at resolution . We
use a 5-level pyramid with resolutions from R; to Rss.

Follwoing [4, 6, 9], We also adopt a composition loss by
computing the difference between the images composed us-
ing the ground truth o and the predicted &:

Leomp =/ (Cla) = C(&))2 + €2, (6)

where C(a) = oF + (1 — a)B composes a new image
with the source foreground F', a new background B and
the alpha matte . The foreground F' is estimated offline
using [3] given the generated pseudo ground truth trimap.
The final loss is the sum of all the losses from above: £ =
‘Cdc + £7”'C + ‘Cd + ‘Clap + Ecomp-

2. Additional Baselines

Due to space limit, we show only the most representative
baselines in the main paper. There are other popular base-
line methods that we do not include in the main paper but
are often used by prior works. We summarize the results
in Tab. 1. Tab. 1 extends Tab. 2 (in the main paper) with
additional baselines such as LF [10], HATT [8], SHM [1],
and AIM [5]. As one as see from the table, our model out-
performs all the methods in the table. The added baselines
do not change our conclusion since have included the best
performing baselines (e.g. DIM and P3M-Net) in the main
paper. We list them here for completeness and a more com-
prehensive comparison.

3. Results on Real Videos

Please check out the attached demo videos in the supple-
mentary material.



Table 1. Quantitative results on the P3M-500 tet data with additional baselines, which are listed in the upper part of the table. The lower
part is copied from Table 2 of the main paper. T indicates that a trimap is used.

P3M-500-NP P3M-500-P
Method GFLOPS SAD SAD-T Grad Conn SAD SAD-T Grad Conn
LF [10] 7190.0 32.59 14.53 31.93 19.50 | 42.95 12.43 42.19 18.80
HATT [8] 4264.3 30.53 13.48 19.88 | 27.42 | 2599 11.03 14.91 25.29
SHM [1] 1943.3 20.77 9.14 20.30 17.09 | 21.56 9.14 21.24 17.53
AIM [5] 487.4 15.50 10.16 14.82 18.03 13.20 8.84 12.58 17.75
DIM! [9] 791.6 5.32 5.32 4.70 7.70 4.89 4.89 4.48 9.68
P3M-Net [4] 364.9 11.23 7.65 10.35 12.51 8.73 6.89 8.22 13.88
MODNet 2] 512x512 input 15.7 20.20 12.48 16.83 18.41 30.08 12.22 19.73 28.61
fullres input 103.2 63.74 13.56 2575 | 62.69 | 95.47 13.70 37.28 | 94.86
BGMv2 [6] Resnet-50 26.5 16.72 7.55 13.00 15.39 15.70 7.23 15.54 14.71
Resnet-101 33.9 15.66 7.72 12.42 14.65 13.90 7.23 14.69 13.13
Ours 19.0 10.60 6.83 10.78 9.77 10.04 6.44 12.65 941
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