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1. Content
In this supplemental file, we provide more details of our

Multi-Scale Linear Transformation (MSLT) networks pre-
sented in the main paper. Specifically, we provide

• the detailed implementation of Laplacian Pyramid
(LP) decomposition and reconstruction in § 2.

• the channel dimension of the features in our SFE mod-
ule in § 3.

• the details of coefficient transformation in our bilateral
grid network in § 4.

• more details of high-frequency layers correction in § 5.

• the architecture of the Channel-MLP network in our
main paper in § 6.

• more ablation studies in § 7.

• more visual comparisons of our MSLTs with the
other comparison methods on the ME [1] and SICE
datasets [3] in § 8.

• the visual comparisons in ablation studies in § 9.

• the societal impact in § 10.

2. Detailed implementation of Laplacian Pyra-
mid (LP) decomposition and reconstruc-
tion

In our MSLT, we deploy the conventional Gaussian ker-
nel for Laplacian Pyramid (LP) [2, 6, 9, 10] decomposition
and reconstruction. In decomposition, we first use a fixed
5 × 5 Gaussian kernel (Eqn. 1) to perform convolution on
the input image I ∈ RH×W×3 with stride = 2, padding =
2 to obtain G1. Then, we perform the same convolution
operation on Gi (i = 1, ..., n− 1, note that n = 4 in our
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MSLTs) to generate Gi+1. After getting Gaussian pyra-
mid sequence {Gi ∈ R

H

2i−1 × W

2i−1 ×3|i = 1, ..., n}, we up-
sample the Gaussian pyramid Gi+1 (i = 1, ..., n− 1) by
inserting comfortable all-zero vectors between every two
rows and between every two columns, which is convolved
with the Gaussian kernel (Eqn. 1) and then subtracted from
Gi to obtain the high-frequency layer Hi of Laplacian pyra-
mids. For i = n, we directly treat Gn as the low-frequency
layer Ln. In this way, we obtain the Laplacian pyramids of
{Hi|i = 1, ..., n− 1} and Ln. In reconstruction, for each
layer in the processed Laplacian pyramids, we use the same
upsample method used in the decomposition and then add
the results to the higher layer. Finally, we obtain the recon-
structed image O ∈ RH×W×3.

Gaussian kernel =
1

256
×


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (1)

In our MSLT+ and MSLT++, we introduce learnable
3× 3 convolutions with stride = 2 for downsampling in the
Laplacian pyramid decomposition, and 3 × 3 convolutions
with stride = 1 followed by bi-linear interpolation for up-
sampling in the Laplacian pyramid reconstruction.

3. Channel dimension of the features in our
SFE module

For our Self-modulated Feature Extraction (SFE) mod-
ule, as shown in Figure 1 (b), we describe the specific num-
bers of input channels and output channels for the SFE mod-
ule, which is used in both predicting the guidance map G in
our bilateral grid network and feature extraction in our Hi-
erarchical Feature Decomposition (HFD) module, as shown
in Figures 2 and 3 in the main paper. For the guidance map
prediction, numbers of channel C1 and C2 are 3 and 8, re-
spectively. In order to generate a gray-scale guidance map,
we additionally take a 1 × 1 convolution from 8 channels
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to 1 channel at the end of SFE. For the feature extraction in
our HFD, both C1 and C2 are equal to 40.

(a) Context-aware Feature Decomposition (CFD)

(b) Self-modulated Feature Extraction (SFE)

Figure 1. The detailed structure of our CFD module (a) and
our SFE module (b). In our MSLTs, the CFD module receives
a fixed feature input size of 48 × 48 × 40 in our HFD. But the
input and output of SFE module in predicting the guidance map is
different from that in HFD module. See § 3 for details.

4. Details of coefficient transformation in our
bilateral grid network

Here, we elaborate on the coefficient transformation
in the bilateral grid network our MSLT. We use the 3D
bilateral grid of affine transformation coefficients B ∈
R16×16×72 and the guidance map G ∈ R

H

2n−1 × W

2n−1 for
slicing [4]. We compute a 2D grid of coefficients B ∈
R

H

2n−1 × W

2n−1 using B and pixel locations from grid G by
tri-linear interpolation [4]:

B[x, y] =
∑
i,j,k

τ(ghx− i)τ(gwy−j)τ(d·G[x, y]−k)B[i, j, k],

(2)
where τ(·) = max(1 − | · |, 0) is the linear interpolation
kernel, gh and gw are the spacial shape of grid B. We fix
both gh and gw to 16 and the depth of B to d = 6. Each cell
of grid B contains 12 channels. For each pixel of the low-
frequency layer Ln, we multiply the three RGB values with
the corresponding values of the 1st to the 3rd channels of the
corresponding pixel in grid B and add them together, plus
the fourth channel value as a bias to get corrected R channel
value of the pixel. Similarly, the G and B channels of this
pixel are corrected. More details about the bilateral grid
learning based transformation scheme can be found in [4].

5. More details of high-frequency layers cor-
rection

For the processing of the high-frequency layers, we de-
ploy a small MLP consisted of two 1 × 1 convolutional
layers with a LeakyReLU [12] between them. For high-
frequency layer Hn−1, when predicting the mask Mn−1,
the input is a 9-channel feature map concatenated by Hn−1,
the upsampled low-frequency layer Ln and the upsampled
corrected low-frequency layer Ln along the channel dimen-
sion. So we set the channel numbers of the input and out-
put to the first 1 × 1 convolutional layer as both 9. We set
the channel numbers of the input and output to the second
1× 1 convolutional layer as 9 and 3, respectively. For each
other high-frequency layer Hi (i = n − 2, ..., 1), we set
the channel numbers of the input and output to both 1 × 1
convolutional layers as 3 to predict the mask Mi.

Additionally, in our MSLT++ network, we directly use
the high-frequency layer H1 for Laplacian pyramid recon-
struction rather than that processed by the high-frequency
layer correction to accelerate the inference speed. The spe-
cific structure of MSLT++ is shown in Figure 3.

6. Architecture of the Channel-MLP network
in our main paper

To reduce the parameter amount and computational
costs, we employ channel-wise MLP widely in our MSLTs.
As a comparison to MLPs, we design a plain Channel-MLP
network with 7,683 parameters to perform exposure correc-
tion in the Tables 1-3 and Figure 6 of the main paper. As
shown in Figure 2, the plain Channel-MLP network con-
tains four sequential 1 × 1 convolutional layers, each of
which followed by a ReLU activation layer.

Figure 2. Architecture of the comparison Channel-MLP. The
numbers on the “Conv-1” box represent the number of input and
output channels of the convolution, respectively.

7. More Ablation Studies
In this section, we provide more experimental results to

study: 1) how parameter sharing in high-frequency layers
correction influences the performance of our MSLT? 2) how
the GAP and GSP influence our CFD module? 3) how to
design the use of SFE modules in our HFD module? 4) the
effect of feature separation order in our CFD module.
1) How parameter sharing in high-frequency layers
correction influences the performance of our MSLT?
In high-frequency layers correction, we deploy small



MLPs consisted of two 1 × 1 convolutional layers
with a LeakyReLU [12] between them to predict Mask
{Mi|i = 1, ..., n− 1}. As described in § 5, the 1 × 1 con-
volutions used to predict Mask {Mi|i = 1, ..., n− 2} has 3
input and output channels. Therefore, we design a com-
parison experiment of whether small MLPs used in dif-
ferent high-frequency layers correction share parameters.
As shown in Table 1, whether the small MLPs in high-
frequency layers correction share parameters has little ef-
fect on the performance of our MSLT. For a lower number
of parameters, we choose sharing parameters in our MSLT.

Table 1. Results of the high-frequency layers correction of our
MSLT with the parameters of 1 × 1 convolutions shared or
not. “not shared” means we deploy independent convolutions be-
tween each high-frequency layer. “shared” means small MLPs in
different high-frequency layers share convolution parameters.

Method PSNR ↑ SSIM ↑ LPIPS ↓ # Param. FLOPs (M) Speed (ms)
not shared 20.87 0.832 0.1670 7,618 83.45 4.24

shared 21.02 0.835 0.1644 7,594 83.45 4.34

2) How GAP and GSP influences our CFD module? The
mean and standard deviation (std) of each channel are used
in our CFD module to estimate the 3D bilateral grid of
affine transformation coefficients for exposure correction.
To demonstrate their combined effect, we replace the addi-
tion of GAP and GSP (denoted as “GAP + GSP”) in our
CFD module with single GAP (denoted as “GAP”) or sin-
gel GSP (denoted as “GSP”) in our CFD module. As shown
in Table 2, with similar inference speed, “GAP + GSP”
achieves best numerical results, while single GAP performs
better than singe GSP. This illustrates that adding the mean
and std of each channel in our CFD module is indeed useful.
Besides, the mean plays a principal role.

Table 2. Results of only using GAP or GSP in our CFD module.
“GAP” (or “GSP”) means we use only “GAP” (or “GSP”) in our
CFD module. “GAP + GSP” means we use the method of adding
the “GAP” and “GSP” in our CFD module.

Method PSNR ↑ SSIM ↑ LPIPS ↓ # Param. FLOPs (M) Speed (ms)
GAP 20.71 0.829 0.1688 7,594 83.73 4.32
GSP 20.47 0.826 0.1670 7,594 83.17 4.33

GAP+GSP 21.02 0.835 0.1644 7,594 83.45 4.34

3) How to design and use SFE module in HFD?. To study
this question, we remove SFE modules in HFD or keep only
one convolution and ReLU in SFE, denoted as “w/o SFEs”
and “w/ Conv-1”, respectively. As shown in Table 3, al-
though removing the SFE module or part of it can reduce
parameters and computational costs, the PSNR, SSIM [15]
and LPIPS [16] are not as good as keeping our SFE module.
4) Effect of feature decomposition order in CFD. Our
CFD module decompose the context-aware feature and the
residual feature by feature subtraction. Here, we contrast
the cases either the context-aware feature or the residual
feature used as inputs to the next SFE, respectively. As
shown in Table 4, our model performs comparably when

Table 3. Results of how the SFE modules are present in the
HFD module. “w/o SFEs” (“w/ SFEs”) means whether we re-
move the SFE modules in the HFD. “w/ Conv-1” means we re-
place SFE in HFD module with a simple 1×1 convolutional layer
and a ReLU layer.

Method PSNR ↑ SSIM ↑ LPIPS ↓ # Param. FLOPs (M) Speed (ms)
w/o SFEs 20.18 0.823 0.1845 2,672 60.77 3.85
w/ Conv-1 20.64 0.830 0.1740 4,321 72.11 3.88
w/ SFEs 21.02 0.835 0.1644 7,594 83.45 4.34

the SFE module is fed with the context-aware feature or the
residual feature. We conclude that the feature decomposi-
tion order in CFD module does not affect the performance
of the HFD module.
Table 4. Results of whether the Context-aware feature out-
put by CFDs is input to SFE or Residual feature is input to
SFE in HFD module. “Context-aware feature” means we feed
the context-aware feature into SFE module and “Residual feature”
means we feed the residual feature feature into SFE module in our
CFD module.

Method PSNR ↑ SSIM ↑ LPIPS ↓ # Param. FLOPs (M) Speed (ms)
Context-aware feature 20.81 0.827 0.1694 7,594 83.45 4.35

Residual feature 21.02 0.835 0.1644 7,594 83.45 4.34

8. More visual comparisons of our MSLTs with
the other comparison methods

Here, we present more visual comparison results with
other competing methods on the ME dataset [1] and the
SICE [3] dataset here. For the ME dataset, we present two
sets of comparison images for each of the five relative expo-
sure values of {−1.5,−1, 0,+1,+1.5} in Figures 5-9. For
the SICE dataset, we present three sets of comparison im-
ages each for under and over exposed inputs in Figures 10
and 11. All these results demonstrate that our MSLT net-
works (MSLT, MSLT+, and MSLT++) achieve compara-
ble or even better visual quality on the exposure corrected
images than the competing methods with larger parameter
amount and computational costs.

9. Visual comparisons in ablation studies
In this section, we will provide visual comparisons of ab-

lation studies in our paper and this supplementary file. Fig-
ures 12-16 represent the 1st-5th ablation study in our pa-
per and Figures 17-20 represent the 1st-4th ablation study
in this supplementary file, respectively. For simplicity, we
randomly select one image from the two datasets for com-
parison in each ablation study.

Specifically, Figure 12 shows the visual results of our
MSLT with different number of Laplacian pyramid levels
on one over-exposure image. Figures 13 and 14 show the
visual results of our MSLT with different variants of CFD
module and different number of CFD modules in HFD. Fig-
ure 15 shows visual results of our MSLT with different vari-
ants of HFD module in the developed Bilateral Grid Net-
work. Figure 16 shows the visual results of our MSLT and



MSLT+ with some high-frequency layers in Laplacian pyra-
mid unprocessed by MSLT/MSLT+. Figure 17 shows vi-
sual results of our MSLT with the parameters of 1× 1 con-
volutions shared or not. Figure 18 shows visual results of
our MSLT which handles whether or not GAP and GSP are
used in CFD module. Figure 19 shows visual results of our
MSLT which handles SFE modules differently. Figure 20
shows visual results of our MSLT with with different inputs
to our SFE module.

As we can see, our MSLT/MSLT+ can better restore the
brightness and color of the images than the other methods
in all these ablation studies.

10. Societal Impact
This work has the potential to be applied to enhance the

user experience of taking photos in real-time, and enjoys
much positive societal impact.
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Figure 3. Overview of our MSLT++ network. Based on MSLT+ network, we remove the mask prediction MLP in correcting the high-
frequency layer H1 in MSLT+, and directly using the H1 together with other corrected layers {L4,H3,H2} for final LP reconstruction.

(a) Our HFD module (b) “Conv-1” (c) “Conv-3”
Figure 4. The detailed structure of (a) our HFD module, (b) “Conv-1” and (c) “Conv-3” in Section 4.3 (4) of our paper. All these
three networks take a feature map of 48 × 48 × 3 as input and output a 3D bilateral grid of affine coefficients B ∈ R16×16×72. C in and
C out denote the number of input and output channels of convolutions, respectively.



Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Figure 5. Visual quality comparison of exposure corrected images from ME dataset [1] for 0 exposure value.



Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth
Figure 6. Visual quality comparison of exposure corrected images from ME dataset [1] for -1 exposure value.

Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Figure 7. Visual quality comparison of exposure corrected images from ME dataset [1] for -1.5 exposure value.



Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Figure 8. Visual quality comparison of exposure corrected images from ME dataset [1] for +1 exposure value.

Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Figure 9. Visual quality comparison of exposure corrected images from ME dataset [1] for +1.5 exposure value.



Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Figure 10. Visual quality comparison of under exposure corrected images from SICE dataset [3].



Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Input Zero-DCE [7] SCI [11] LPTN [10] MSEC [1] IAT [5]

LCDP [14] Channel-MLP MSLT MSLT+ MSLT++ Ground Truth

Figure 11. Visual quality comparison of over exposure corrected images from SICE dataset [3].

Input

w/o LP 2 3

4 (MSLT) 5 Ground Truth
Figure 12. Visual quality comparison of exposure corrected images processed by our MSLT with different number of Laplacian
pyramid levels. “w/o LP” means we do not use Laplacian pyramid.



Input IN CA CFD (MSLT) Ground Truth
Figure 13. Visual quality comparison of exposure corrected images processed by our MSLT with different variants of CFD module
in our HFD module. “CFD”: Context-aware Feature Decomposition. “IN”: Instance Normalization [13] with feature decomposition.
“CA”: Channel Attention [8] with feature decomposition.

Input

1 2 3 (MSLT)

4 5 Ground Truth
Figure 14. Visual quality comparison of exposure corrected images processed by our MSLT with different number of CFD modules
in the proposed HFD module.

Input Conv-1 Conv-3 HFD (MSLT) Ground Truth
Figure 15. Visual quality comparison of exposure corrected images processed by our MSLT with different variants of HFD module
in the developed Bilateral Grid Network. “Conv-1” (or “Conv-3”): the network consisting of multiple 1× 1 (or 3× 3) convolutional layers
and ReLU activation function(see 4). “HFD”: our Hierarchical Feature Decomposition module.

Input H3+H2+H1 H3+H2+H1 H3+H2+H1 H3+H2+H1 Ground Truth

Input H3+H2+H1 H3+H2+H1 H3+H2+H1 H3+H2+H1 Ground Truth
Figure 16. Visual quality comparison of exposure corrected images processed by our MSLT(1st row) and MSLT+(2nd row) with
some high-frequency layers in Laplacian pyramid unprocessed by MSLT/MSLT+. “Hi”: the unprocessed high-frequency layer. “Hi”:
the exposure-corrected high-frequency layer.



Input not shared shared (MSLT) Ground Truth
Figure 17. Visual quality comparison of exposure corrected images processed by our MSLT with the parameters of 1 × 1 con-
volutions shared or not. “not shared”: deploy independent convolutions between each high-frequency layer. “shared”: small MLPs in
different high-frequency layers share convolution parameters.

Input GAP GSP GAP+GSP (MSLT) Ground Truth
Figure 18. Visual quality comparison of exposure corrected images processed by our MSLT which handles whether or not GAP
and GSP are used in CFD moudle. “GAP” (“GSP”): use only “GAP” (“GSP”) in our CFD module. “GAP + GSP”: use the method of
adding the“GAP” and “GSP” in our CFD module.

Input w/o SFEs w/ Conv-1 w/ SFEs (MSLT) Ground Truth
Figure 19. Visual quality comparison of exposure corrected images processed by our MSLT which handles SFE modules differently.
“w/o SFEs”: SFE moudles are removed from HFD. “w/ Conv-1”: only one convolution and ReLU are left in HFD. “ w/ SFEs”: our MSLT.

Input Context-aware feature Residual feature (MSLT) Ground Truth
Figure 20. Visual quality comparison of exposure corrected images processed by our MSLT with different inputs to SFE. “Context-
aware feature”: the context-aware feature is fed into SFE. “Residual feature”: residual feature is fed into SFE.
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