A. Efficient Proxy Metric for Performance
A.1. Event-Driven Convolution

Event-driven architectures (e.g. NeuronFlow[28, 29]) are a
type of dataflow architectures that emulate the brain’s en-
ergy and compute efficiency by executing the networks in
an asynchronous and parallel event-driven manner. As il-
lustrated in Fig. 10, a convolution is only performed when
there’s an arrival event in the input activation maps (i.e.,
sigma maps in full-frame inference / delta maps in delta-
frame inference), meaning the entire accompanying com-
putations and memory accesses can be skipped in the pro-
cessing if the neuron stays inactive.

Activation

Event-Driven Convolution

Standard Convolution

Figure 10: Performing convolution on conventional hard-
ware versus an event-driven processor.

A.1.1 Multiply-Accumulates (MACs)

For a convolution layer, the number of filters is defined by
C'yut and their size are noted C;,, X Hy, x Wy, where C, H
and W stands for channel, height, and width. The input and
output of the layer are composed of a set of feature maps,
with shapes (C;,, X Hy, X Wiy, and (Cout X Hour X Woue)
respectively. In the following, we consider the padding
mode “same” and a stride S. The quantity of total input
events of a convolution are indicated by N,;, while the
proportion of non-zero input events, representing density,
is denoted as D.,;. Consider a deep neural network as a
stack of L convolution blocks, each including one convolu-
tion layer (e.g., Conv2D, DepthwiseConv2D, TransposeC-
onv2D) followed by one activation layer (e.g., ReLU [15]).
The amount of multiply-accumulate (MAC) operations in
the " convolution block can be described as

MAC'? = Cout X Hout X Wout X C’i’n X Hk X Wk
= Z\[act/s2 X Cout X Hk X Wk
MAC; = Dact X Nact/S? x Cour x Hi x Wy,

16)

where M AC? represents the M AC' operations accounting
for input event sparsity, while M AC¢ does not.

9886

A.1.2 Latency vs. Event Density

While running a deep neural network on an event-driven
processor, convolution layers possess a significant portion
of computes in network inference. Additionally, most
event-driven architectures are non-von Neumann architec-
tures, adopting the NMC (Near-Memory Computing[!])
technique to restore data for efficient reading and writing.
This makes the total inference time 7),.; approximate the
sum of the processing time T} of the i*" convolution layers.
Therefore, under a naive mapping strategy, the network in-
ference time 7,¢; is roughly proportional to the input event
density De,; of network, as shown in Eq. (17) and Eq. (18).

L
MAC},,, =Y MAC;
i

L an

MACY,4 = ZDevtqa X Nevt,,;/slz X Cout; X Hp, x Wy,
@

L L
Tnet 22 Y Ty 2 MAC;,,4 < > Deyt; = Tnet < Devt -
2 2

18)
To confirm the linear correlation between latency and event
density on hardware, we generate several DNN architec-
tures from the NAS-Bench-201 search space. Our experi-
ments cover a range of event densities, varying from 5% to
100% in 5% increments. The plots in Figure 11 demonstrate
that the relationship between event density and latency is
approximately linear for identical DNN architectures. How-
ever, the slopes of distinct DNN architectures differ consid-
erably, primarily due to the varying average computations
triggered by a single event across these networks.

Latency vs. Event Density on Various Networks
20 T

® Net 1
ol e Net 2
157 o £5°° Net 3
™ é
é Y o ° . ® Net4
> 10 + = o - e Net5
S ’ ‘..;,.:: e %00 00 o Net6
‘.(G ° “. % .0 ° ?
| 5—-%'-,;}-\ Net 7
: Net 8
0 } } | |
20% 40% 60% 80%

Event Density

Figure 11: The relation between GrAI-VIP on-chip latency
and event density across various network architectures.

A.1.3 Energy vs. Event Density

During network inference, energy consumption comprises
two main parts: memory accesses and logic computation.
Memory accesses can be described as data flowing from
and to the memory, which consumes a significant sink of
energy. For an energy estimation, we simply categorize the
memory accesses that happen in each event-driven convolu-
tion block (Conv-ReLU) into three components: read oper-
ations to activation out (ReadO), read operations to param-
eters (ReadW), read and write operations (ReadA, WriteA)
to accumulate states (Acc States), as depicted in Fig. 12.

Weights i Weights i+1
Convolution i Convolution i+1
Write T i Read | Write T l Read
Acc States i Acc States i+1

| |

Activation i Activation i+1

ReadOut ReadOut

Figure 12: Memory accesses in event-driven convolution.

a. Read operations to event out (Green): ReadOut occurs
before each convolution block, it reads N,., times depend-
ing on the inference execution mode, i.e. IV,,,, = 3 if block
1 runs for delta-frame inference (temporal) and N,,, = 1
for full-frame inference (spatial).

ReadO,aJH = Nroi X Hi,”,

X Win X Ci'n,i+1 . (19)

i+1 i+1
b. Read operations to parameters (Orange): In an event-
driven convolution layer ¢ + 1, solely non-zero out events
from the former convolution layer i will trigger a read for
the associated weight parameters W, ;.

ReadW; 1 = CUUt'LJrl X Hki,+1 X VVkiJrl X Ne'uti X De’uti» (20)

c. Read and Write operations to states (Blue): The output
feature maps (states) from each convolution are retained for
the following layer processing, or for the subsequent frame
computation in the case of delta-frame inference. There-
fore, the number of reading and writing states can be esti-
mated as:

ReadA; 11 + WriteA; 11

@1
= Cout;iq X Hk’z+1 X Wk'H»l X Nevti X Devti X 2.

Accordingly, the complete energy consumption utilized for
memory accesses under fpl6 execution can be formulated
as:

L
Emem = y_ B2 x (ReadO; + ReadW; + ReadA; + WriteA,;),
i

(22)

9887

where EJP16 is the energy cost of a single read/write oper-

ation in SRAM at half-precision floating points (fp16).
Apart from the energy consumption associated with mem-
ory accesses, there is an additional energy expenditure re-
lated to multiply-accumulate (MAC) operations. We calcu-
late the energy cost of each MAC operation by multiplying
it with its respective frequency of occurrence, as per the
computation outlined in Eq. (17).

L
Blogits = 3 _(EIDY® + BIP'%) x MAC;, 23)
4

where E/7 and EIP!% represent the energy cost of indi-
vidual addition and multiplication operations at half preci-
sion. Consequently, the energy estimation model tailored

for event-driven processor can be succinctly expressed as

Enet = Emem + Elogits

L
=Y EJPIS x (ReadO; 41 + ReadW; + ReadA; + WriteA;)

L
DL+ B x aaCs
[

L L
~ Umem X E Dacti X Nacti + Clogits X § Dact,; X Nact,;
1 %

L
= Fnet < ZDaCti X Nact; = Enet < Daect,

7

24
where Crnem and Clogirs indicate the constants.Drawing
from our modeling approach, we can infer that the energy
consumption of network is approximately in proportion to
its event density during inference.

B. Event-Driven DNN Processor GrAI-VIP
Table 2: Resources and Features of GrAI-VIP

RESOURCES/FEATURES GRAI-VIP

PROCESS TSMC 12FFC

SILICON AREA 7.6 X 7.6 mm?

TRANSISTORS 4.5G
MAX # NEURON CORES 144
MAX # NEURON 18 MILLIONS
MAX # SYNAPSES 48 MILLIONS
ON-CHIP MEMORY 36 MB

INFORMATION CODING GRADED SPIKE EVENTS (UP TO 16-BIT PAYLOAD)

PROCESSING TYPE 16-BITS FLOATING POINTS
2/4/8/16-BITS FLOATING POINTS

650 M Hz

SYNAPSES TYPE

FREQUENCY

In this section, we present a concise overview of the event-
driven processor GrAI-VIP, which serves as a crucial com-
ponent in our experiments to evaluate the hardware perfor-
mance of event suppressed models. GrAI-VIP stands as a

commercially-available event-driven neural-network accel-
erator, building upon the successor of NeuronFlow [1,
and is developed by GrAl Matter Labs. As illustrated in
Fig. 13, GrAI-VIP is a 12-nm taped-out System-on-Chip
(SoC), comprising a grid arrangement of SIMD-4 event-
driven cores in a 12 x 12 configuration. Each core is
equipped with 2Mbits on-chip memory for the storage of
both weights and neuron states in an energy-efficient and
performant manner. Additionally, each event-driven core is
furnished with a set of event queues and vector units, con-
tributing to enhanced performance and energy efficiency.
Furthermore, a comprehensive depiction of the distinctive
attributes of GrAI-VIP is provided in Tab. 2, while its hard-
ware development kits (HDK) are visually exemplified in
Fig. 14.

k)

Neuron Core
+ NoC Router
SRAM SRAM
Bank|0 ¢ Bankil
0,

2,
i

a 12x12 Neuron Core Mesh'

a
SRAM
Banki3

SRAM

: \Bankz

3.0, PCIE

FBEAFRRM core, ISP USE

Figure 13: Block diagram of the event-driven neural-
network accelerator (GrAI-VIP). The zoom-in shows the
high-level structure of a neuron core.

IIIII‘

fannanad

=
=
=

Figure 14: GrAI-VIP 80mm M.2 board.

C. Bayesian Optimization with SAT

The core of our study involves combining activation sup-
pression and temporal suppression to achieve a cumulative
effect in event suppression. Therefore, the problem can be
formulated as:

Liotar (U), 0)-

Ltask (w7 0) +)\Sst',g*m,a,(wv 0) + Adeelta (wa 0)

min
w,0
. (25)
min
'LU,

9888

Eq. (25) shows that the efficacy of our suppression train-
ing hinges on three components: task loss, sigma sparsity
penalty, and delta sparsity penalty. However, these three
loss terms compete, since excessive optimization of one
may result in the suboptimal optimization of the other two.
Therefore, the optimization focus is regulated by coefficient
pairs (A5, Ag) associated with these loss components. To
streamline the training effort for various coefficient pairs,
we employ Bayesian Optimization (BO) for efficient hyper-
parameter search.

We provide an illustrative example of MobileNetv1-SSD
utilizing the EgoHands dataset to visually elucidate the
concept behind our tailor-made target function, known as
the Sparsity-Accuracy Aware Target (SAT), as described in
Eq. (26).

FOLAG) = Sevt(A

k3
s

k3
s

Ag) * o (B (CNLAG) = Clim))-

First, the top two heat maps in Fig. 15 respectively represent
the accuracy and event sparsity maps of CATS-optimized
models with 25 coefficient pairs (A5, A\g). We observe
that as A; and A, increase, the model’s accuracy drops
and the event sparsity increases from the left-bottom to the
right-top. Our optimization objective is to maximize the
event sparsity S¢,¢ Within the network while maintaining
the model accuracy C' above a quality constraint of Cy;;,.
Assuming the standard-trained model has an accuracy of
95.35%, and we aim to preserve 99.5% of the model’s qual-
ity after optimization. Thus, the quality constraint Cj;,,, is
set at 94.87%. To account for both metrics (accuracy and
event sparsity) in optimization, we generate a soft mask
through the sigmoid function o(3 * (C (A, \) — Clim))
based on accuracy (where 3 = 10%), as shown in the left-
bottom heat map of Fig. 15. This mask selects a few trials
that meet the quality constraint. Subsequently, we multiply
this masked accuracy map with the event sparsity map to
visualize our target function SAT in the right-bottom heat
map of Fig. 15. As a result, the peak score (indicated in
red circle) in the target function map represents the optimal
CATS-optimized model under the given quality constraint.
In general, it only takes 5 to 7 trials with different coeffi-
cient pairs to reach this optimum, leading to a reduction in
training time by over 4 x. This confirms the effectiveness of
SAT in Bayesian Optimization.

(26)

D. Static camera vs. Moving Camera

Table 3 presents the outcomes of event suppression using
the FairMOT-yolov5s model on the MOT17 dataset for ob-
ject tracking with both static and moving cameras. One
noteworthy observation is that temporal suppression (tem-
poral) from static cameras achieves a 1.30x lower event
density and a 1.77x lower standard deviation in the tem-
poral domain compared to that from moving cameras. This
finding reveals the higher stability of network computations

Accuracy (mAP@.5)

5e-06

3e-06

10.952 0.952 0.949

7e-0710.952 0.955

delta coeff Ay
=
(0]
S
()]

5e-0710.954 0.954

1e-07 3e-07 5e-07 7e-07 1e-06
sigma coeff Ag

Soft Mask on Accuracy

1.000 0.999 0.991

delta coeff Ay
=
@
=

1.000 1.000 0.903

1e.07 3e-07 5e-07 7e-07 le-06
sigma coeff Ag

0.9525

0.9500

0.9475

0.9450

0.9425

0.9400

0.9375

Event Sparsity

5e-0610.902 0.933 0.932 0.920 0.940

0.908 0.923 0.918 0.940 e

w
¢
)
&

0.917 0.928 0.934 .55

delta coeff Ay
=
(0]
S
o

7e-07 0.889 0.897 0.931 9582

5e-07 0.890 0.906 0.940 0.78

1e-07 3e-07 5e-07 7e-07 le-06
sigma coeff A

Target Function SAT

5e-06
3e-0610.828
le-0610.811

7e-0710.824 0.865 0.803

delta coeff Ay

5e-0710.770 0.860 0.869

1e'07 3e-07 5e-07 7e-07 le-06
sigma coeff A

The highest score — Optimal

Figure 15: The visualization of our target function SAT.

Table 3: Event suppression results of FairMOT on MOT17
(3 videos recorded from static cameras: “MOT17-02-SDP”,
"MOT17-05-SDP”, "MOT17-09-SDP”, 4 videos recorded from
moving cameras: “MOT17-05-SDP”, "MOT17-09-SDP”, "MOT17-
11-SDP”, "MOT17-13-SDP”). D3 * represents the event den-
sity in the spatial domain during full-frame inference, while
D2« x denotes the event density in the temporal domain
during delta-frame inference.

STATIC CAMERA MOVING CAMERA

MopeL D:,*%] Dg,**%] DZ,*[%] D, **%]

MEAN/STD MEAN/STD MEAN/STD MEAN/STD
BASELINE 48.95/0.09 50.34/0.55 49.01/0.26 52.44/1.07
ACTIVATION ~ 34.82/0.06 35.99/0.44 34.69/0.20 37.39/0.73
TEMPORAL 38.93/0.05 22.47/1.08 38.73/0.19 29.15/1.91
CATS 34.01/0.03 19.82/0.95 33.76/0.16 25.81/1.69

in videos with less motion.
The second noticeable trend is that activation suppression

(activation) results in nearly identical event density across
random frames. Remarkably, it can reduce the standard de-

viation of event density even below the baseline level.

A third observation is that combining activation suppression
with temporal suppression mitigates the standard deviation
of event density in both moving and static camera scenarios,
resulting in improved stability of event suppression on top
of temporal suppression. Despite the standard deviation of
CATS event densities remaining below 2% across frames,
indicating high temporal stability, it’s important to note that
variations might arise in different dataset scenarios. Further
evaluation across various scenarios is necessary for a com-
prehensive understanding.

9889

