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In this supplementary material, we provide more results
(Sec. 1), additional method details (Sec. 2) and experimental
details (Sec. 3), and that could not be fitted into the main
paper due of lack of space.

1. More results
Main examples. As shown in Supp. Fig. 2, we provide
more visual comparisons (Sec 3.2 and Sec 3.3 in the main
paper), including IGR [7], SAL [1], SALD [2], DiGS [4],
and ours. The results demonstrate that our method is able
to reconstruct more accurate surfaces while producing less
artifacts. Yet, existing neural methods [1,2,4,7] occasionally
generate ghost surfaces. In addition, we provide more com-
parison examples on Thingi10K [14], the density-variation
data [8], and the noisy data [8] in Supp. Figs. 3 to 5, respec-
tively. Besides, we provide visual comparisons with more
baseline methods on the examples shown in the main paper;
please see Supp. Figs. 6 to 10.

Ablation experiment. We provide more visual compar-
isons for the ablation study in Supp. Figs. 11 and 12, in
which the transparent visualization results show that remov-
ing the signed supervision wrosens the accuracy on thin
structures, thereby leading to undesired surfaces.

Generalization on scene-level data. We provide the
qualitative comparison on one example from 3D Scene
dataset [15]. As shown in Fig. 1, our methods could re-
constructed more accurate surface compared with DiGS [4].

Results on Surface Reconstruction Benchmark [13] data.
We conduct the experiments on the Surface Reconstruction
Benchmark (SRB) [13] data. Note that, we randomly sam-
ple 50, 000 points, each on the reconstructed mesh and the
ground-truth dense point clouds, respectively, to calculate
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Figure 1. Visual comparison on 3D Scene [15].

the metrics, following SAP [12]. The quantitative results are
provided in Supp. Tab. 1 and the visualization results are
shown in Supp. Fig. 13. Overall, SSP achieves comparable
performance with the current SOTA methods (DiGS [4]) on
SRB [13]. We notice that the input point clouds in SRB [13]
contain some missing regions, leading to unreliable unsigned
supervisions. In this case, SSP may wrongly prioritize the
optimization towards the missing regions according to the
tracked loss values, thereby causing large errors. See the top
example in Supp. Fig. 13. We regard this as a limitation of
our method and leave this as a future work to introduce the
data prior for accurate surface reconstruction from inputs
with missing regions.

2. Method details

2.1. Space partitioning

We use the same rule to determine the voxel size for all
the shapes (ABC subset [6], Thingi10k [14], noisy data [8],
density-varying data [8], and Surface Reconstruction Bench-
mark [13]). More concretely, for any given shape (repre-
sented in the point cloud format and normalized to fit into
[-0.9, 0.9]), we first find the "distances" from each point to its
50th closest point. Then, we calculate the average "distance"
(termed as "density_indicator") from all distance values since
the average distance reflects the sampling density of a given
shape. We use 10∗round(1/(1.5∗density_indicator∗10))
as the final voxel grid resolution. Note that we make sure the
resolution is divisible by 10 for convenience. Then we mark
a voxel as “occupied” if it contains at least one point. We
provide the pseudo code of the space partitioning algorithm
(Sec. 3.2 in the main paper) in Supp. Algo. 1.
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Figure 2. Visual comparisons for neural methods (IGR [7], SAL [1], SALD [2], and DiGS [4]) on the ABC subset [6].

2.2. Loss-based per-region sampling

Region-wise loss tracking. Different losses (i.e., Lon
dist,

Loff
dist, Lon

grad, Loff
grad, Lsigned) are applicable to different vox-

els (Sec. 3.3 in the main paper). Specifically, we track
Lon
dist and Lon

grad for the voxels that contain points. We track
Loff
dist and Loff

grad for all voxels in region Vuncertain . We track
Lsigned for all voxels in region Vknown .



Algorithm 1: Space Partitioning (Python style)
Input :3D array Vocc, indicating if a voxel is occupied
Output :3D array Voutside, indicating if a voxel is outside the object for sure
// shape: N ×N ×N

1 Initialize a visited list Vv with 0;
2 outside = {};

// Step 1: find all empty voxels on the six faces of the cube and label
them as “outside”

// test voxels on two opposite faces of the cube
3 for i in {1, N} do
4 for j ← 1 to N do
5 for k ← 1 to N do
6 if Vocc [i, j, k] == 0 and Vv [i, j, k] == 0 then
7 Voutside [i, j, k]= 1;
8 outside.append([i,j,k]);
9 end

10 Vv [i, j, k] = 1;
11 end
12 end
13 end
// test the other two sets of opposite faces similarly

14
...

// Step 2: a BFS-like procedure to recursively find all “outside” voxels
connected to the initial outside voxels on the six faces

15 offset = {[1, 0, 0], [−1, 0, 0], [0, 1, 0], [0,−1, 0], [0, 0, 1], [0, 0,−1]};
16 while index < outside.size() do
17 cur_pos = outside [i];
18 for i← 1 to 6 do

// test all six faces
19 neighbor_pos = {cur_pos [1]+ offset [i][1],cur_pos [2]+ offset [i][2],cur_pos [3]+ offset [i][3]};
20 if check_valid (neighbor_pos) and Vocc[neighbor_pos] == 0 and Vv[neighbor_pos] == 0 then

// if this is a valid && occupied && not visited position

21 Voutside[neighbor_pos]= 1;
// add the connected outside voxel

22 outside.append(neighbor_pos);
23 end
24 Vv[neighbor_pos] = 1;
25 index = index + 1

26 end
27 end
28 return Voutside

Adaptive sampling. As mentioned in the main paper (Sec
3.3), we perform a two-step sampling for each loss: (i) adap-
tively sample a set of voxels based on the previous region
losses and (ii) sample points within each region (voxels).
Specifically, for the sampling of on-surface points and off-
surface points, we additionally randomly sample voxels to

better cover the whole Vuncertain region. Besides, we keep a
similar number of sample points (34588) as IGR [7] (34816).
Specifically, we set 16384 ∗ 7

9 for the sample number of
on-surface points, 16384 ∗ 1

3 as the sample number of off-
surface points in region Vuncertain and 16384 as the sample
number in the outside region Voutside.



2.3. Motivation for using derivative supervision in
the free space

According to the following proposition, the normal of
point q’s nearest point p′ (denoted as ∇fθ(p

′)
||∇fθ(p′)|| ) on the un-

derlying continuous surface equals to the derivative of q.
Empirically, we found it helpful to utilize the normal of
the nearest point p (denoted as np) in P to approximate
∇fθ(p

′)
||∇fθ(p′)|| as a supervision for point q in the free space.

Proposition 1 Given a random point q in the free space
and its closest point on the underlying surface p′, we have
∇f(p′)

||∇f(p′)|| =
∇f(q)

||∇f(q)|| , where the derivative always exists for
f .

The proof: we first consider point q that is inside the under-
lying shape, which means f(q) < 0.

(1) First, we prove the following proposition:

∇f(p′)
∥∇f(p′)∥

=
q − p′

∥q − p′∥
, (1)

where ∥ · ∥ is L2 norm. Since p′ is q’s closest point on the
underlying surface defined by f(x) = 0, then

p′ = argmin
x
∥x− q∥ s.t. f(x) = 0.

And the corresponding Lagrange function is

L(x) = ∥x− q∥+ λf(x),

whose gradient can be calculated as

∇(p′,λ)L =

(
−(q − p′)

∥q − p′∥
+ λ∇f(p′), f(p′)

)
.

Let −(q−p′)
∥q−p′∥ +λ∇f(p′) = 0 and we get∇f(p′) = λ q−p′

||q−p′∥ .
Hence, we know that ∇f(p′) is collinear to vector (q −
p′). Since the gradient denotes the direction of the greatest
increase of the function, we have ∇f(p′)

∥∇f(p′)∥ = q−p′

∥q−p′∥ .
(2) Then, we can prove that

∇f(q)
∥∇f(q)∥

=
q − p′

∥q − p′∥
=
∇f(p′)
∥∇f(p′)∥

. (2)

According to the definition of directional derivative,

∇vf(x) = lim
h→0

f(x+ hv)− f(x)

h
,

where v is the given unit vector. The relation between gra-
dient and directional derivative at point q can be written
as

∇f(q)
∥∇f(q)∥

= argmax
v
∇vf(q)

and
∥∇f(q)∥ = max

v
∇vf(q).

Since the signed distance function should satisfy ∥∇f(q)∥ =
1 , we can know that the directional derivative always satis-
fies ∇vf(q) ≤ ∥∇f(q)∥ = 1 for any direction v. Moreover,
by definition,∇vf(q) can be expressed as

∇vf(q) = lim
h→0

f(q + hv)− f(q)

h
.

We can consider the specific direction v′ = q−p′

∥q−p′∥ and
let q∗ = q + hv′. We also denote

p′′ = argmin
ps.t.f(p)=0

∥q∗ − p∥.

We can prove that p′′ = p′ by contradiction, i.e., if p′′ ̸= p′,
then ∥q∗ − p′′∥ < ∥q∗ − p′∥, we add the same value on each
side of the inequality, ∥q∗ − q∥+ ∥q∗ − p′′∥ < ∥q∗ − q∥+
∥q∗ − p′∥ = ∥q − p′∥, since q∗ locates in the line segment
(q, p′). However, ∥q∗−q∥+∥q∗−p′′∥ ≥ ∥q−p′′∥ > ∥q−p′∥
which leads to contradiction. Therefore, p′′ = p′.

Thus,

∇v′f(q) = lim
h→0

f(q∗)− f(q)

h

= lim
h→0

−1 ∗ ∥q∗ − p′∥ − (−1) ∗ ∥q − p′∥)
h

= 1.

Hence, the direction v′ yields argmax
v
∇vf(q). Therefore,

we obtain
∇f(q)
∥∇f(q)∥

=
q − p′

∥q − p′∥
. (3)

In the meantime, if q is outside the shape, it can be proved
in a similar way that

∇f(p)
∥∇f(p)∥

=
∇f(q)
∥∇f(q)∥

=
−(q − p′)

∥q − p′∥
.

3. Experimental details
Implementation details of the proposed semi-signed pri-
oritized (SSP) neural fitting. We adopt the MLP architec-
ture that contains eight hidden layers, each with 512 hidden
units, to represent the SDF function as IGR [7]. Besides,
we adopt Geometry Network Initialization (GNI) [1] to ini-
tialize the implicit SDF function to a rough unit sphere.
We use ADAM optimizer [10] with an initial learning
rate of 0.005 and schedule the learning rate to decrease
by a factor of 0.5 every 2000 epochs. For the whole ex-
periment except for the noisy data (i.e., ABC subset [6],
Thingi10K [14], density-varying data [8], noisy data [8],
and Surface Reconstruction Benchmark [13]) , the weight



SRB [13]

Methods F-score ↑ CD-L1 ↓ (×100)

SPSR [9] 0.735 2.232
SAP [12] 0.830 0.760
IMLS [11] 0.821 0.779
POCO [5] 0.858 0.760
N-P [3] 0.658 0.963
SAL [1] 0.831 0.909
SALD [2] 0.595 1.779
IGR [7] 0.723 2.794
DiGS [4] 0.876 0.686
Ours 0.874 0.660

Table 1. Quantitative results on SRB [13]. Note that the SRB
dataset does not contain GT normal to calculate the normal consis-
tency (NC) metric.

parameter wi is {40, 20, 1, 1, 1, 10} in Eq. (8) in the main
paper. For the noisy data, the weight parameter is adjusted
to {20, 10, 20, 10, 1, 10} to rely less on the distance losses
(Lon

dist,Lfree
dist) and more on the gradient losses (Lon

grad,Lfree
grad).

Optimization setting. We list the optimization epochs
and fitting time for different methods in Supp. Tab. 1. We
optimize our method on each shape for 10K epochs. For
DiGS [7], we optimize the neural network using the default
maximum number of epoch, i.e., 10K. For Neural-Pull [3],
we optimize the neural network using the default maximum
number of epoch 40K as in their official code. We optimize
IGR [7], SAL [1], and SALD [2] for 20K epoch to keep a
similar optimization time as our method. Since SALD [2]
did not release the code for surface reconstruction, we im-
plement the code based on SAL [1] by adding the on-surface
derivative supervision [2] with the default loss weight ac-
cording to the SALD [2] paper. For SAP [12], we just follow
the provided optimization-based setting to report the results.

Method Ours DiGS [4] IGR [7] SAL [1] SALD [2] NP [3]

Epoch 10K 10K 20K 20K 20K 40K
Time ∼15 ∼15 ∼27 ∼20 ∼22 ∼15

Table 2. The optimization epochs & approximate time (in minutes)
for different optimization-based neural methods.

Evaluation metrics. We follow the same procedure as in
SAP [12] to calculate the metrics, including the L1-based
Chamfer Distance (denoted as CD-L1), the Normal Con-
sistency (NC), and the F1-score with default threshold 1%
in Sec. 4.1 of the main paper. Specifically, for the ABC
subset [6], we randomly sample 40, 000 points, each on the
reconstructed mesh and the ground-truth mesh, respectively,
to calculate the aforementioned metrics. For Thingi10K [14],
we randomly sample 50, 000 points, each on the recon-

structed mesh and the ground-truth mesh, respectively, to
calculate the metrics, following SAP [12]. For the density-
varying data and noisy data, we directly use the provided
clean point cloud points (containing 100, 000 points) as GT
and randomly sample the same number of points on the
reconstructed meshes to calculate the metrics.

Details for applying proposed signed supervision to ex-
isting methods. To apply our proposed supervision, we
use the space partition algorithm in Supp. Sec. 2.1 to find
the Vknown region. Then, we randomly sample points in the
Vknown region to apply the signed guidance in addition to
the original constraints of the official methods (i.e., IGR [7],
DiGS [4]) without any other change. Specifically, we set the
number of the sample points in the Vknown region as 16348
for IGR [7] and DiGS [4].
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Figure 3. Visual comparisons on Thingi10K [6].



Figure 4. Visual comparisons on the density-variation data [8].
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Figure 5. Visual comparisons on the noisy data [8].
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Figure 6. Visual comparisons with more methods on the ABC subset [6].
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Figure 7. Visual comparisons on Thingi10K [6].
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Figure 8. Visual comparisons on Thingi10K [6].
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Figure 9. Visual comparisons on the density-variation data [8].



Figure 10. Visual comparisons on the noisy data [8].



Figure 11. Ablation study on Thingi10K [6]. Note that, we provide two images (i.e., non-transparent image (top) and transparent image
(bottom)) for each result.
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Figure 12. Ablation study on Thingi10K [6]. Note that, we provide two images (i.e., transparent image (top) and non-transparent image
(bottom)) for each result.



Figure 13. Visual comparisons on the SRB [13] data. For the GT shape in the top example, the red color encodes the distance between the
GT point clouds with the input clouds. Deeper red color means the larger distance, thus indicating the missing regions.
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